e2f833f58f
* checkpoint * fixing pow * undo pow * backward max on GPU and CPU rewrite * indentation * changing seed for curiosity * max replaced equality * undo seed * rebase * fixed tests * merge error |
||
---|---|---|
.github/workflows | ||
ane | ||
docs | ||
examples | ||
extra | ||
test | ||
tinygrad | ||
.gitignore | ||
LICENSE | ||
README.md | ||
push_pypi.sh | ||
requirements.txt | ||
setup.py |
README.md
For something in between a pytorch and a karpathy/micrograd
This may not be the best deep learning framework, but it is a deep learning framework.
Due to its extreme simplicity, it aims to be the easiest framework to add new accelerators to, with support for both inference and training. Support the simple basic ops, and you get SOTA vision extra/efficientnet.py
and language extra/transformer.py
models. We are working on support for the Apple Neural Engine.
Eventually, we will build custom hardware for tinygrad, and it will be blindingly fast. Now, it is slow.
Installation
pip3 install git+https://github.com/geohot/tinygrad.git --upgrade
Example
from tinygrad.tensor import Tensor
x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.matmul(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
Same example in torch
import torch
x = torch.eye(3, requires_grad=True)
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
Neural networks?
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop, and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
Neural network example (from test/test_mnist.py)
from tinygrad.tensor import Tensor
import tinygrad.optim as optim
class TinyBobNet:
def __init__(self):
self.l1 = Tensor.uniform(784, 128)
self.l2 = Tensor.uniform(128, 10)
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
model = TinyBobNet()
optim = optim.SGD([model.l1, model.l2], lr=0.001)
# ... and complete like pytorch, with (x,y) data
out = model.forward(x)
loss = out.mul(y).mean()
optim.zero_grad()
loss.backward()
optim.step()
GPU and Accelerator Support
tinygrad supports GPUs through PyOpenCL.
from tinygrad.tensor import Tensor
(Tensor.ones(4,4).gpu() + Tensor.ones(4,4).gpu()).cpu()
ANE Support?!
If all you want to do is ReLU, you are in luck! You can do very fast ReLU (at least 30 MEGAReLUs/sec confirmed)
Requires your Python to be signed with ane/lib/sign_python.sh
to add the com.apple.ane.iokit-user-access
entitlement, which also requires amfi_get_out_of_my_way=0x1
in your boot-args
. Build the library with ane/lib/build.sh
from tinygrad.tensor import Tensor
a = Tensor([-2,-1,0,1,2]).ane()
b = a.relu()
print(b.cpu())
Warning: do not rely on the ANE port. It segfaults sometimes. So if you were doing something important with tinygrad and wanted to use the ANE, you might have a bad time.
Adding an accelerator
You need to support 14 first class ops:
Relu, Log, Exp # unary ops
Add, Sub, Mul, Pow # binary ops (with broadcasting)
Sum, Max # reduce ops (with axis argument)
Reshape, Transpose, Slice # movement ops
Matmul, Conv2D # heavy data processing ops
While more ops may be added (like Sign), I think these base 14 are stable.
ImageNet inference
Despite being tiny, tinygrad supports the full EfficientNet. Pass in a picture to discover what it is.
ipython3 examples/efficientnet.py https://upload.wikimedia.org/wikipedia/commons/4/41/Chicken.jpg
Or, if you have a webcam and cv2 installed
ipython3 examples/efficientnet.py webcam
PROTIP: Set "GPU=1" environment variable if you want this to go faster.
PROPROTIP: Set "DEBUG=1" environment variable if you want to see why it's slow.
tinygrad also supports GANs
See examples/mnist_gan.py
The promise of small
tinygrad will always be below 1000 lines. If it isn't, we will revert commits until tinygrad becomes smaller.
Running tests
python3 -m pytest
TODO
- Train an EfficientNet on ImageNet
- Add a language model. BERT?
- Add a detection model. EfficientDet?
- Reduce code
- Increase speed
- Add features