tinygrad/README.md

98 lines
2.2 KiB
Markdown

<p align="center">
<img src="https://raw.githubusercontent.com/geohot/tinygrad/master/docs/logo.png">
</p>
--------------------------------------------------------------------
![Unit Tests](https://github.com/geohot/tinygrad/workflows/Unit%20Tests/badge.svg)
For something in between a [pytorch](https://github.com/pytorch/pytorch) and a [karpathy/micrograd](https://github.com/karpathy/micrograd)
This may not be the best deep learning framework, but it is a deep learning framework.
The Tensor class is a wrapper around a numpy array, except it does Tensor things.
### Installation
```bash
pip3 install tinygrad
```
### Example
```python
from tinygrad.tensor import Tensor
x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.matmul(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
```
### Same example in torch
```python
import torch
x = torch.eye(3, requires_grad=True)
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
```
### Neural networks?
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop, and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
### Neural network example (from test/test_mnist.py)
```python
from tinygrad.tensor import Tensor
import tinygrad.optim as optim
from tinygrad.utils import layer_init_uniform
class TinyBobNet:
def __init__(self):
self.l1 = Tensor(layer_init_uniform(784, 128))
self.l2 = Tensor(layer_init_uniform(128, 10))
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
model = TinyBobNet()
optim = optim.SGD([model.l1, model.l2], lr=0.001)
# ... and complete like pytorch, with (x,y) data
out = model.forward(x)
loss = out.mul(y).mean()
loss.backward()
optim.step()
```
### The promise of small
tinygrad, with tests, will always be below 1000 lines. If it isn't, we will revert commits until tinygrad becomes smaller.
### Running tests
```bash
python -m pytest
```
### TODO
* Train an EfficientNet
* EfficientNet backward pass
* Tensors on GPU (GPU support, must support Mac)
* Reduce code
* Increase speed
* Add features