mirror of https://github.com/commaai/tinygrad.git
98 lines
2.2 KiB
Markdown
98 lines
2.2 KiB
Markdown
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/geohot/tinygrad/master/docs/logo.png">
|
|
</p>
|
|
|
|
--------------------------------------------------------------------
|
|
|
|
![Unit Tests](https://github.com/geohot/tinygrad/workflows/Unit%20Tests/badge.svg)
|
|
|
|
For something in between a [pytorch](https://github.com/pytorch/pytorch) and a [karpathy/micrograd](https://github.com/karpathy/micrograd)
|
|
|
|
This may not be the best deep learning framework, but it is a deep learning framework.
|
|
|
|
The Tensor class is a wrapper around a numpy array, except it does Tensor things.
|
|
|
|
### Installation
|
|
|
|
```bash
|
|
pip3 install tinygrad
|
|
```
|
|
|
|
### Example
|
|
|
|
```python
|
|
from tinygrad.tensor import Tensor
|
|
|
|
x = Tensor.eye(3)
|
|
y = Tensor([[2.0,0,-2.0]])
|
|
z = y.matmul(x).sum()
|
|
z.backward()
|
|
|
|
print(x.grad) # dz/dx
|
|
print(y.grad) # dz/dy
|
|
```
|
|
|
|
### Same example in torch
|
|
|
|
```python
|
|
import torch
|
|
|
|
x = torch.eye(3, requires_grad=True)
|
|
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
|
|
z = y.matmul(x).sum()
|
|
z.backward()
|
|
|
|
print(x.grad) # dz/dx
|
|
print(y.grad) # dz/dy
|
|
```
|
|
|
|
### Neural networks?
|
|
|
|
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop, and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
|
|
|
|
### Neural network example (from test/test_mnist.py)
|
|
|
|
```python
|
|
from tinygrad.tensor import Tensor
|
|
import tinygrad.optim as optim
|
|
from tinygrad.utils import layer_init_uniform
|
|
|
|
class TinyBobNet:
|
|
def __init__(self):
|
|
self.l1 = Tensor(layer_init_uniform(784, 128))
|
|
self.l2 = Tensor(layer_init_uniform(128, 10))
|
|
|
|
def forward(self, x):
|
|
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
|
|
|
model = TinyBobNet()
|
|
optim = optim.SGD([model.l1, model.l2], lr=0.001)
|
|
|
|
# ... and complete like pytorch, with (x,y) data
|
|
|
|
out = model.forward(x)
|
|
loss = out.mul(y).mean()
|
|
loss.backward()
|
|
optim.step()
|
|
```
|
|
|
|
### The promise of small
|
|
|
|
tinygrad, with tests, will always be below 1000 lines. If it isn't, we will revert commits until tinygrad becomes smaller.
|
|
|
|
### Running tests
|
|
|
|
```bash
|
|
python -m pytest
|
|
```
|
|
|
|
### TODO
|
|
|
|
* Train an EfficientNet
|
|
* EfficientNet backward pass
|
|
* Tensors on GPU (GPU support, must support Mac)
|
|
* Reduce code
|
|
* Increase speed
|
|
* Add features
|
|
|