You like pytorch? You like micrograd? You love tinygrad! ❤️
Go to file
George Hotz e01e35e545 14 ops to write for GPU 2020-10-31 10:59:30 -07:00
.github/workflows clean up CI (#28) 2020-10-29 07:43:31 -07:00
docs adds beautiful and meaningful logo 2020-10-26 18:12:49 +01:00
examples 14 ops to write for GPU 2020-10-31 10:59:30 -07:00
test group conv: forward pass works (#34) 2020-10-30 09:19:20 -07:00
tinygrad 14 ops to write for GPU 2020-10-31 10:59:30 -07:00
.gitignore add setup.py and change imports to relative 2020-10-26 18:19:50 +03:00
LICENSE readme 2020-10-18 11:27:37 -07:00
README.md 14 ops to write for GPU 2020-10-31 10:59:30 -07:00
push_pypi.sh push pypi 2020-10-27 08:13:15 -07:00
requirements.txt fix for invalid GPU error caused by (test/test_net_speed.py::TestConvSpeed::test_mnist) when testing in CI (#31) 2020-10-29 17:45:16 -07:00
setup.py literally just bump version for picture on pypi 2020-10-27 08:14:22 -07:00

README.md


Unit Tests

For something in between a pytorch and a karpathy/micrograd

This may not be the best deep learning framework, but it is a deep learning framework.

The Tensor class is a wrapper around a numpy array, except it does Tensor things.

Installation

pip3 install tinygrad

Example

from tinygrad.tensor import Tensor

x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.matmul(x).sum()
z.backward()

print(x.grad)  # dz/dx
print(y.grad)  # dz/dy

Same example in torch

import torch

x = torch.eye(3, requires_grad=True)
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()

print(x.grad)  # dz/dx
print(y.grad)  # dz/dy

Neural networks?

It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop, and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.

Neural network example (from test/test_mnist.py)

from tinygrad.tensor import Tensor
import tinygrad.optim as optim
from tinygrad.utils import layer_init_uniform

class TinyBobNet:
  def __init__(self):
    self.l1 = Tensor(layer_init_uniform(784, 128))
    self.l2 = Tensor(layer_init_uniform(128, 10))

  def forward(self, x):
    return x.dot(self.l1).relu().dot(self.l2).logsoftmax()

model = TinyBobNet()
optim = optim.SGD([model.l1, model.l2], lr=0.001)

# ... and complete like pytorch, with (x,y) data

out = model.forward(x)
loss = out.mul(y).mean()
loss.backward()
optim.step()

The promise of small

tinygrad, with tests, will always be below 1000 lines. If it isn't, we will revert commits until tinygrad becomes smaller.

Running tests

python -m pytest

TODO

  • Train an EfficientNet
    • EfficientNet backward pass
    • Tensors on GPU (GPU support, must support Mac)
  • Reduce code
  • Increase speed
  • Add features