mirror of https://github.com/commaai/tinygrad.git
62 lines
1.8 KiB
Python
62 lines
1.8 KiB
Python
import unittest
|
|
from tinygrad.nn.state import get_parameters
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.nn import Conv2d, BatchNorm2d, optim
|
|
|
|
def model_step(lm):
|
|
with Tensor.train():
|
|
x = Tensor.ones(8,12,128,256, requires_grad=False)
|
|
optimizer = optim.SGD(get_parameters(lm), lr=0.001)
|
|
loss = lm.forward(x).sum()
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
del x,loss
|
|
optimizer.step()
|
|
|
|
class TestBatchnorm(unittest.TestCase):
|
|
def test_conv(self):
|
|
class LilModel:
|
|
def __init__(self):
|
|
self.c = Conv2d(12, 32, 3, padding=1, bias=False)
|
|
def forward(self, x):
|
|
return self.c(x).relu()
|
|
lm = LilModel()
|
|
model_step(lm)
|
|
|
|
def test_two_conv(self):
|
|
class LilModel:
|
|
def __init__(self):
|
|
self.c = Conv2d(12, 32, 3, padding=1, bias=False)
|
|
self.c2 = Conv2d(32, 32, 3, padding=1, bias=False)
|
|
def forward(self, x):
|
|
return self.c2(self.c(x)).relu()
|
|
lm = LilModel()
|
|
model_step(lm)
|
|
|
|
def test_two_conv_bn(self):
|
|
class LilModel:
|
|
def __init__(self):
|
|
self.c = Conv2d(12, 24, 3, padding=1, bias=False)
|
|
self.bn = BatchNorm2d(24, track_running_stats=False)
|
|
self.c2 = Conv2d(24, 32, 3, padding=1, bias=False)
|
|
self.bn2 = BatchNorm2d(32, track_running_stats=False)
|
|
def forward(self, x):
|
|
x = self.bn(self.c(x)).relu()
|
|
return self.bn2(self.c2(x)).relu()
|
|
lm = LilModel()
|
|
model_step(lm)
|
|
|
|
def test_conv_bn(self):
|
|
class LilModel:
|
|
def __init__(self):
|
|
self.c = Conv2d(12, 32, 3, padding=1, bias=False)
|
|
self.bn = BatchNorm2d(32, track_running_stats=False)
|
|
def forward(self, x):
|
|
return self.bn(self.c(x)).relu()
|
|
lm = LilModel()
|
|
model_step(lm)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|