tinygrad/test/external/external_test_jit_on_models.py

44 lines
1.5 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad import Tensor, dtypes
from tinygrad.engine.jit import TinyJit
from tinygrad.helpers import CI
from test.helpers import derandomize_model
from examples.llama import Transformer
def helper_test_jitted_correctness(gen, train, train_jit):
nojit = train(*gen()).numpy()
for _ in range(5): jit = train_jit(*gen()).numpy()
np.testing.assert_allclose(nojit, jit, rtol=1e-3, atol=1e-5)
class TestJittedModels(unittest.TestCase):
def test_jitted_tiny_llama(self):
old_float = dtypes.default_float
dtypes.default_float = dtypes.float16
args_tiny = {"dim": 1024, "hidden_dim": 1024, "n_heads": 8, "n_layers": 8, "norm_eps": 1e-05, "vocab_size": 1000}
model = Transformer(**args_tiny)
derandomize_model(model)
def test(t): return model(t, 0).realize()
@TinyJit
def test_jit(t): return model(t, 0).realize()
helper_test_jitted_correctness(lambda: (Tensor([[1,]]),), test, test_jit)
dtypes.default_float = old_float
@unittest.skipUnless(not CI, "huge for CI")
def test_jitted_stable_diffusion(self):
from examples.stable_diffusion import UNetModel, unet_params
model = UNetModel(**unet_params)
derandomize_model(model)
def test(t, t2): return model(t, 801, t2).realize()
@TinyJit
def test_jit(t, t2): return model(t, 801, t2).realize()
helper_test_jitted_correctness(lambda: (Tensor.randn(1, 4, 16, 16),Tensor.randn(1, 77, 768)), test, test_jit)
if __name__ == "__main__":
unittest.main()