tinygrad/test/external/external_benchmark_resnet.py

128 lines
5.6 KiB
Python

import functools
import time
import unittest
from tinygrad import Tensor, TinyJit, GlobalCounters, Device
from tinygrad.helpers import getenv, Context
from tinygrad.nn.optim import SGD
from tinygrad.nn.state import get_parameters
from tinygrad.engine.realize import run_schedule
from extra.models import resnet
from examples.mlperf.initializers import Conv2dHeNormal, Linear
from examples.hlb_cifar10 import UnsyncedBatchNorm
# benchmark memory or kernel count: DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py
# benchmark speed: BEAM=2 JITCNT=10 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py
# benchmark only one layer: BEAM=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py BenchmarkResnetTrain.test_layer1_2
# inspect: DEBUG=2 BEAM=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py
# inspect 1x1 convs: DEBUG=2 BEAM=2 CONV=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py
# inspect 3x3 convs: DEBUG=2 BEAM=2 CONV=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py
# inspect 3x3 convs with batchnorm: DEBUG=2 BEAM=2 CONV=2 BN=1 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py
# etc
# use ASSIGN=0 to disable batchnorm/optimizer assigns
# memory will be slightly high with JITCNT > 1
bs = getenv("BS", 64)
class BenchmarkResnetTrain(unittest.TestCase):
def _get_layer(self, layer_i, slice_i):
# isolate to conv, with or without BN
conv = getenv("CONV", 0)
bn = getenv("BN", 0)
if not hasattr(self, 'model'):
resnet.Conv2d = Conv2dHeNormal
resnet.Linear = Linear
if not getenv("SYNCBN"): resnet.BatchNorm = functools.partial(UnsyncedBatchNorm, num_devices=1)
self.model = resnet.ResNet50()
self.layers = [self.model.layer1, self.model.layer2, self.model.layer3, self.model.layer4]
layer = self.layers[layer_i][slice_i]
xy = 112 >> layer_i
xy >>= (1 if slice_i > 0 or layer_i == 0 else 0) # layer 1 is preceded by maxpool2d
name = f"layer{layer_i+1} slice{slice_i+1}"
# get specific conv
if conv:
convs = [layer.conv1, layer.conv2, layer.conv3] + ([layer.downsample[0]] if layer.downsample else [])
bns = [layer.bn1, layer.bn2, layer.bn3] + ([layer.downsample[1]] if layer.downsample else [])
f = [convs[conv-1]]
if bn: f.append(bns[conv-1])
f.append(Tensor.relu)
cin = f[0].in_channels
if conv == 3: xy //= convs[1].stride
return f"{name} conv{conv} x{str((bs, cin, xy, xy)):20s} k{str(f[0].weight.shape):20s}" + (" bn" if bn else ""), f, cin, xy
cin = layer.conv1.in_channels
return f"{name} x{(bs, cin, xy, xy)}", [layer], cin, xy
def _test_layer(self, name, layer, cin, xy):
optim = SGD(get_parameters(layer), bs / 128 * 1.0) # need sgd for some params but not consequential for benchmarking
with Context(TRACK_MATCH_STATS=0): Tensor.realize(*[t.assign(t.detach().contiguous()) for t in get_parameters(optim)])
JITCNT = getenv("JITCNT", 1)
Tensor.training = True
@TinyJit
def step(x):
optim.zero_grad()
x.grad = None
y = x.sequential(layer).contiguous().contiguous_backward()
y.sum().backward()
if getenv("ASSIGN", 1): sched, _ = Tensor.schedule_with_vars(y, x.grad, *optim.schedule_step())
else: sched, _ = Tensor.schedule_with_vars(y, x.grad, *[t.grad for t in optim.params])
for _ in range(JITCNT):
run_schedule(list(sched))
CNT = getenv("CNT", 5)
best_tm = None
flops, mem_used, mem, kernels = None, None, None, None
for i in range(CNT):
with Context(TRACK_MATCH_STATS=0): x = Tensor.randn(bs, cin, xy, xy, requires_grad=True).realize()
GlobalCounters.reset()
st = time.perf_counter()
step(x)
Device[Device.DEFAULT].synchronize()
et = time.perf_counter()
flops = GlobalCounters.global_ops / JITCNT
mem_used = GlobalCounters.mem_used # a little high with JITCNT > 1 fsr
mem = GlobalCounters.global_mem / JITCNT
if kernels is None: kernels = GlobalCounters.kernel_count // JITCNT
tm = (et-st) / JITCNT
if best_tm is None or tm < best_tm: best_tm = tm
print(f"\r{name:38s}: {best_tm * 1000:>9.2f} ms, {flops / 10**12 / best_tm:>6.2f} tflops, {mem / 10**9 / best_tm:>5.0f} GB/s, "
f"{mem_used / 10**9: 6.2f} GB used, {kernels:>5d} kernels")
return best_tm, flops, mem, kernels
def test_layer1_1(self): self._est(*self._test_layer(*self._get_layer(0, 0)), 1)
def test_layer1_2(self): self._est(*self._test_layer(*self._get_layer(0, 1)), 2)
def test_layer2_1(self): self._est(*self._test_layer(*self._get_layer(1, 0)), 1)
def test_layer2_2(self): self._est(*self._test_layer(*self._get_layer(1, 1)), 3)
def test_layer3_1(self): self._est(*self._test_layer(*self._get_layer(2, 0)), 1)
def test_layer3_2(self): self._est(*self._test_layer(*self._get_layer(2, 1)), 5)
def test_layer4_1(self): self._est(*self._test_layer(*self._get_layer(3, 0)), 1)
def test_layer4_2(self): self._est(*self._test_layer(*self._get_layer(3, 1)), 2)
est_tm, est_flops, est_mem, est_kernels = 0, 0, 0, 0
@classmethod
def _est(cls, tm, flops, mem, kernels, mult):
cls.est_tm += tm * mult
cls.est_flops += flops * mult
cls.est_mem += mem * mult
cls.est_kernels += kernels * mult
@classmethod
def tearDownClass(cls):
print(f"\restimated step tm: {cls.est_tm * 1000.0:.2f} ms, {cls.est_flops / 10 ** 12 / cls.est_tm:.3f} tflops, "
f"{cls.est_mem / 10 ** 9 / cls.est_tm:.2f} GB/s, {cls.est_kernels} kernels")
if __name__ == '__main__':
unittest.main()