mirror of https://github.com/commaai/tinygrad.git
343 lines
13 KiB
Python
343 lines
13 KiB
Python
from tinygrad import Tensor
|
|
from tinygrad.nn import Conv2d, BatchNorm2d, Linear
|
|
from tinygrad.nn.state import load_state_dict, torch_load
|
|
from tinygrad.helpers import fetch
|
|
|
|
from typing import Optional, Dict
|
|
import numpy as np
|
|
from scipy import linalg
|
|
|
|
# Base Inception Model
|
|
|
|
class BasicConv2d:
|
|
def __init__(self, in_ch:int, out_ch:int, **kwargs):
|
|
self.conv = Conv2d(in_ch, out_ch, bias=False, **kwargs)
|
|
self.bn = BatchNorm2d(out_ch, eps=0.001)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
return x.sequential([self.conv, self.bn, Tensor.relu])
|
|
|
|
class InceptionA:
|
|
def __init__(self, in_ch:int, pool_feat:int):
|
|
self.branch1x1 = BasicConv2d(in_ch, 64, kernel_size=1)
|
|
|
|
self.branch5x5_1 = BasicConv2d(in_ch, 48, kernel_size=1)
|
|
self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)
|
|
|
|
self.branch3x3dbl_1 = BasicConv2d(in_ch, 64, kernel_size=1)
|
|
self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=(3,3), padding=1)
|
|
self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=(3,3), padding=1)
|
|
|
|
self.branch_pool = BasicConv2d(in_ch, pool_feat, kernel_size=1)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
outputs = [
|
|
self.branch1x1(x),
|
|
x.sequential([self.branch5x5_1, self.branch5x5_2]),
|
|
x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2, self.branch3x3dbl_3]),
|
|
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1)),
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class InceptionB:
|
|
def __init__(self, in_ch:int):
|
|
self.branch3x3 = BasicConv2d(in_ch, 384, kernel_size=(3,3), stride=2)
|
|
|
|
self.branch3x3dbl_1 = BasicConv2d(in_ch, 64, kernel_size=1)
|
|
self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=(3,3), padding=1)
|
|
self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=(3,3), stride=2)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
outputs = [
|
|
self.branch3x3(x),
|
|
x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2, self.branch3x3dbl_3]),
|
|
x.max_pool2d(kernel_size=(3,3), stride=2, dilation=1),
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class InceptionC:
|
|
def __init__(self, in_ch, ch_7x7):
|
|
self.branch1x1 = BasicConv2d(in_ch, 192, kernel_size=1)
|
|
|
|
self.branch7x7_1 = BasicConv2d(in_ch, ch_7x7, kernel_size=1)
|
|
self.branch7x7_2 = BasicConv2d(ch_7x7, ch_7x7, kernel_size=(1, 7), padding=(0, 3))
|
|
self.branch7x7_3 = BasicConv2d(ch_7x7, 192, kernel_size=(7, 1), padding=(3, 0))
|
|
|
|
self.branch7x7dbl_1 = BasicConv2d(in_ch, ch_7x7, kernel_size=1)
|
|
self.branch7x7dbl_2 = BasicConv2d(ch_7x7, ch_7x7, kernel_size=(7, 1), padding=(3, 0))
|
|
self.branch7x7dbl_3 = BasicConv2d(ch_7x7, ch_7x7, kernel_size=(1, 7), padding=(0, 3))
|
|
self.branch7x7dbl_4 = BasicConv2d(ch_7x7, ch_7x7, kernel_size=(7, 1), padding=(3, 0))
|
|
self.branch7x7dbl_5 = BasicConv2d(ch_7x7, 192, kernel_size=(1, 7), padding=(0, 3))
|
|
|
|
self.branch_pool = BasicConv2d(in_ch, 192, kernel_size=1)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
outputs = [
|
|
self.branch1x1(x),
|
|
x.sequential([self.branch7x7_1, self.branch7x7_2, self.branch7x7_3]),
|
|
x.sequential([self.branch7x7dbl_1, self.branch7x7dbl_2, self.branch7x7dbl_3, self.branch7x7dbl_4, self.branch7x7dbl_5]),
|
|
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1)),
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class InceptionD:
|
|
def __init__(self, in_ch:int):
|
|
self.branch3x3_1 = BasicConv2d(in_ch, 192, kernel_size=1)
|
|
self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=(3,3), stride=2)
|
|
|
|
self.branch7x7x3_1 = BasicConv2d(in_ch, 192, kernel_size=1)
|
|
self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
|
|
self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
|
|
self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=(3,3), stride=2)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
outputs = [
|
|
x.sequential([self.branch3x3_1, self.branch3x3_2]),
|
|
x.sequential([self.branch7x7x3_1, self.branch7x7x3_2, self.branch7x7x3_3, self.branch7x7x3_4]),
|
|
x.max_pool2d(kernel_size=(3,3), stride=2, dilation=1),
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class InceptionE:
|
|
def __init__(self, in_ch:int):
|
|
self.branch1x1 = BasicConv2d(in_ch, 320, kernel_size=1)
|
|
|
|
self.branch3x3_1 = BasicConv2d(in_ch, 384, kernel_size=1)
|
|
self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
|
|
self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
|
|
|
|
self.branch3x3dbl_1 = BasicConv2d(in_ch, 448, kernel_size=1)
|
|
self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=(3,3), padding=1)
|
|
self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
|
|
self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
|
|
|
|
self.branch_pool = BasicConv2d(in_ch, 192, kernel_size=1)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3dbl = x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2])
|
|
outputs = [
|
|
self.branch1x1(x),
|
|
Tensor.cat(self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), dim=1),
|
|
Tensor.cat(self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), dim=1),
|
|
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1)),
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class InceptionAux:
|
|
def __init__(self, in_ch:int, num_classes:int):
|
|
self.conv0 = BasicConv2d(in_ch, 128, kernel_size=1)
|
|
self.conv1 = BasicConv2d(128, 768, kernel_size=5)
|
|
self.fc = Linear(768, num_classes)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
x = x.avg_pool2d(kernel_size=5, stride=3, padding=1).sequential([self.conv0, self.conv1])
|
|
x = x.avg_pool2d(kernel_size=1, padding=1).reshape(x.shape[0],-1)
|
|
return self.fc(x)
|
|
|
|
class Inception3:
|
|
def __init__(self, num_classes:int=1008, cls_map:Optional[Dict]=None):
|
|
def get_cls(key1:str, key2:str, default):
|
|
return default if cls_map is None else cls_map.get(key1, cls_map.get(key2, default))
|
|
|
|
self.transform_input = False
|
|
self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=(3,3), stride=2)
|
|
self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=(3,3))
|
|
self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=(3,3), padding=1)
|
|
self.maxpool1 = lambda x: Tensor.max_pool2d(x, kernel_size=(3,3), stride=2, padding=1)
|
|
self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
|
|
self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=(3,3))
|
|
self.maxpool2 = lambda x: Tensor.max_pool2d(x, kernel_size=(3,3), stride=2, padding=1)
|
|
self.Mixed_5b = get_cls("A1","A",InceptionA)(192, pool_feat=32)
|
|
self.Mixed_5c = get_cls("A2","A",InceptionA)(256, pool_feat=64)
|
|
self.Mixed_5d = get_cls("A3","A",InceptionA)(288, pool_feat=64)
|
|
self.Mixed_6a = get_cls("B1","B",InceptionB)(288)
|
|
self.Mixed_6b = get_cls("C1","C",InceptionC)(768, ch_7x7=128)
|
|
self.Mixed_6c = get_cls("C2","C",InceptionC)(768, ch_7x7=160)
|
|
self.Mixed_6d = get_cls("C3","C",InceptionC)(768, ch_7x7=160)
|
|
self.Mixed_6e = get_cls("C4","C",InceptionC)(768, ch_7x7=192)
|
|
self.Mixed_7a = get_cls("D1","D",InceptionD)(768)
|
|
self.Mixed_7b = get_cls("E1","E",InceptionE)(1280)
|
|
self.Mixed_7c = get_cls("E2","E",InceptionE)(2048)
|
|
self.avgpool = lambda x: Tensor.avg_pool2d(x, kernel_size=(8,8), padding=1)
|
|
self.fc = Linear(2048, num_classes)
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
return x.sequential([
|
|
self.Conv2d_1a_3x3,
|
|
self.Conv2d_2a_3x3,
|
|
self.Conv2d_2b_3x3,
|
|
self.maxpool1,
|
|
|
|
self.Conv2d_3b_1x1,
|
|
self.Conv2d_4a_3x3,
|
|
self.maxpool2,
|
|
|
|
self.Mixed_5b,
|
|
self.Mixed_5c,
|
|
self.Mixed_5d,
|
|
self.Mixed_6a,
|
|
self.Mixed_6b,
|
|
self.Mixed_6c,
|
|
self.Mixed_6d,
|
|
self.Mixed_6e,
|
|
|
|
self.Mixed_7a,
|
|
self.Mixed_7b,
|
|
self.Mixed_7c,
|
|
self.avgpool,
|
|
|
|
lambda y: y.reshape(x.shape[0],-1),
|
|
self.fc,
|
|
])
|
|
|
|
|
|
# FID Inception Variation
|
|
|
|
class FidInceptionA(InceptionA):
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
outputs = [
|
|
self.branch1x1(x),
|
|
x.sequential([self.branch5x5_1, self.branch5x5_2]),
|
|
x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2, self.branch3x3dbl_3]),
|
|
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1, count_include_pad=False))
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class FidInceptionC(InceptionC):
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
outputs = [
|
|
self.branch1x1(x),
|
|
x.sequential([self.branch7x7_1, self.branch7x7_2, self.branch7x7_3]),
|
|
x.sequential([self.branch7x7dbl_1, self.branch7x7dbl_2, self.branch7x7dbl_3, self.branch7x7dbl_4, self.branch7x7dbl_5]),
|
|
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1, count_include_pad=False))
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class FidInceptionE1(InceptionE):
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3dbl = x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2])
|
|
outputs = [
|
|
self.branch1x1(x),
|
|
Tensor.cat(self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), dim=1),
|
|
Tensor.cat(self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), dim=1),
|
|
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1, count_include_pad=False)),
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class FidInceptionE2(InceptionE):
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3dbl = x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2])
|
|
outputs = [
|
|
self.branch1x1(x),
|
|
Tensor.cat(self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), dim=1),
|
|
Tensor.cat(self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), dim=1),
|
|
self.branch_pool(x.max_pool2d(kernel_size=(3,3), stride=1, padding=1)),
|
|
]
|
|
return Tensor.cat(*outputs, dim=1)
|
|
|
|
class FidInceptionV3:
|
|
m1: Optional[np.ndarray] = None
|
|
s1: Optional[np.ndarray] = None
|
|
|
|
def __init__(self):
|
|
inception = Inception3(cls_map={
|
|
"A": FidInceptionA,
|
|
"C": FidInceptionC,
|
|
"E1": FidInceptionE1,
|
|
"E2": FidInceptionE2,
|
|
})
|
|
|
|
self.Conv2d_1a_3x3 = inception.Conv2d_1a_3x3
|
|
self.Conv2d_2a_3x3 = inception.Conv2d_2a_3x3
|
|
self.Conv2d_2b_3x3 = inception.Conv2d_2b_3x3
|
|
|
|
self.Conv2d_3b_1x1 = inception.Conv2d_3b_1x1
|
|
self.Conv2d_4a_3x3 = inception.Conv2d_4a_3x3
|
|
|
|
self.Mixed_5b = inception.Mixed_5b
|
|
self.Mixed_5c = inception.Mixed_5c
|
|
self.Mixed_5d = inception.Mixed_5d
|
|
self.Mixed_6a = inception.Mixed_6a
|
|
self.Mixed_6b = inception.Mixed_6b
|
|
self.Mixed_6c = inception.Mixed_6c
|
|
self.Mixed_6d = inception.Mixed_6d
|
|
self.Mixed_6e = inception.Mixed_6e
|
|
|
|
self.Mixed_7a = inception.Mixed_7a
|
|
self.Mixed_7b = inception.Mixed_7b
|
|
self.Mixed_7c = inception.Mixed_7c
|
|
|
|
def load_from_pretrained(self):
|
|
state_dict = torch_load(str(fetch("https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth", "pt_inception-2015-12-05-6726825d.pth")))
|
|
for k,v in state_dict.items():
|
|
if k.endswith(".num_batches_tracked"):
|
|
state_dict[k] = v.reshape(1)
|
|
load_state_dict(self, state_dict)
|
|
return self
|
|
|
|
def __call__(self, x:Tensor) -> Tensor:
|
|
x = x.interpolate((299,299), mode="linear")
|
|
x = (x * 2) - 1
|
|
x = x.sequential([
|
|
self.Conv2d_1a_3x3,
|
|
self.Conv2d_2a_3x3,
|
|
self.Conv2d_2b_3x3,
|
|
lambda x: Tensor.max_pool2d(x, kernel_size=(3,3), stride=2, dilation=1),
|
|
|
|
self.Conv2d_3b_1x1,
|
|
self.Conv2d_4a_3x3,
|
|
lambda x: Tensor.max_pool2d(x, kernel_size=(3,3), stride=2, dilation=1),
|
|
|
|
self.Mixed_5b,
|
|
self.Mixed_5c,
|
|
self.Mixed_5d,
|
|
self.Mixed_6a,
|
|
self.Mixed_6b,
|
|
self.Mixed_6c,
|
|
self.Mixed_6d,
|
|
self.Mixed_6e,
|
|
|
|
self.Mixed_7a,
|
|
self.Mixed_7b,
|
|
self.Mixed_7c,
|
|
lambda x: Tensor.avg_pool2d(x, kernel_size=(8,8)),
|
|
])
|
|
return x
|
|
|
|
def compute_score(self, inception_activations:Tensor, val_stats_path:str) -> float:
|
|
if self.m1 is None and self.s1 is None:
|
|
with np.load(val_stats_path) as f:
|
|
self.m1, self.s1 = f['mu'][:], f['sigma'][:]
|
|
assert self.m1 is not None and self.s1 is not None
|
|
|
|
m2 = inception_activations.mean(axis=0).numpy()
|
|
s2 = np.cov(inception_activations.numpy(), rowvar=False)
|
|
|
|
return calculate_frechet_distance(self.m1, self.s1, m2, s2)
|
|
|
|
def calculate_frechet_distance(mu1:np.ndarray, sigma1:np.ndarray, mu2:np.ndarray, sigma2:np.ndarray, eps:float=1e-6) -> float:
|
|
mu1 = np.atleast_1d(mu1)
|
|
mu2 = np.atleast_1d(mu2)
|
|
sigma1 = np.atleast_2d(sigma1)
|
|
sigma2 = np.atleast_2d(sigma2)
|
|
assert mu1.shape == mu2.shape and sigma1.shape == sigma2.shape
|
|
|
|
diff = mu1 - mu2
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
|
if not np.isfinite(covmean).all():
|
|
offset = np.eye(sigma1.shape[0]) * eps
|
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
|
|
|
if np.iscomplexobj(covmean):
|
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
|
m = np.max(np.abs(covmean.imag))
|
|
raise ValueError(f"Imaginary component {m}")
|
|
covmean = covmean.real
|
|
|
|
tr_covmean = np.trace(covmean)
|
|
|
|
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2*tr_covmean
|