tinygrad/extra/datasets/squad.py

149 lines
4.6 KiB
Python

import json
import os
from pathlib import Path
from transformers import BertTokenizer
import numpy as np
from tinygrad.helpers import fetch
BASEDIR = Path(__file__).parent / "squad"
def init_dataset():
os.makedirs(BASEDIR, exist_ok=True)
fetch("https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json", BASEDIR / "dev-v1.1.json")
with open(BASEDIR / "dev-v1.1.json") as f:
data = json.load(f)["data"]
examples = []
for article in data:
for paragraph in article["paragraphs"]:
text = paragraph["context"]
doc_tokens = []
prev_is_whitespace = True
for c in text:
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
for qa in paragraph["qas"]:
qa_id = qa["id"]
q_text = qa["question"]
examples.append({
"id": qa_id,
"question": q_text,
"context": doc_tokens,
"answers": list(map(lambda x: x["text"], qa["answers"]))
})
return examples
def _check_is_max_context(doc_spans, cur_span_index, position):
best_score, best_span_index = None, None
for di, (doc_start, doc_length) in enumerate(doc_spans):
end = doc_start + doc_length - 1
if position < doc_start:
continue
if position > end:
continue
num_left_context = position - doc_start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_length
if best_score is None or score > best_score:
best_score = score
best_span_index = di
return cur_span_index == best_span_index
def convert_example_to_features(example, tokenizer):
query_tokens = tokenizer.tokenize(example["question"])
if len(query_tokens) > 64:
query_tokens = query_tokens[:64]
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for i, token in enumerate(example["context"]):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
max_tokens_for_doc = 384 - len(query_tokens) - 3
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
length = min(length, max_tokens_for_doc)
doc_spans.append((start_offset, length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, 128)
outputs = []
for di, (doc_start, doc_length) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in query_tokens:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
for i in range(doc_length):
split_token_index = doc_start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
token_is_max_context[len(tokens)] = _check_is_max_context(doc_spans, di, split_token_index)
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < 384:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == 384
assert len(input_mask) == 384
assert len(segment_ids) == 384
outputs.append({
"input_ids": np.expand_dims(np.array(input_ids), 0).astype(np.float32),
"input_mask": np.expand_dims(np.array(input_mask), 0).astype(np.float32),
"segment_ids": np.expand_dims(np.array(segment_ids), 0).astype(np.float32),
"token_to_orig_map": token_to_orig_map,
"token_is_max_context": token_is_max_context,
"tokens": tokens,
})
return outputs
def iterate(tokenizer, start=0):
examples = init_dataset()
print(f"there are {len(examples)} pairs in the dataset")
for i in range(start, len(examples)):
example = examples[i]
features = convert_example_to_features(example, tokenizer)
# we need to yield all features here as the f1 score is the maximum over all features
yield features, example
if __name__ == "__main__":
tokenizer = BertTokenizer(str(Path(__file__).parents[2] / "weights" / "bert_vocab.txt"))
X, Y = next(iterate(tokenizer))
print(" ".join(X[0]["tokens"]))
print(X[0]["input_ids"].shape, Y)