tinygrad/test/models/test_mnist.py

117 lines
3.8 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad.nn.state import get_parameters
from tinygrad.tensor import Tensor
from tinygrad.nn import optim, BatchNorm2d
from extra.training import train, evaluate
from extra.datasets import fetch_mnist
import pytest
pytestmark = [pytest.mark.exclude_gpu, pytest.mark.exclude_clang]
# load the mnist dataset
X_train, Y_train, X_test, Y_test = fetch_mnist()
# create a model
class TinyBobNet:
def __init__(self):
self.l1 = Tensor.scaled_uniform(784, 128)
self.l2 = Tensor.scaled_uniform(128, 10)
def parameters(self):
return get_parameters(self)
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2)
# create a model with a conv layer
class TinyConvNet:
def __init__(self, has_batchnorm=False):
# https://keras.io/examples/vision/mnist_convnet/
conv = 3
#inter_chan, out_chan = 32, 64
inter_chan, out_chan = 8, 16 # for speed
self.c1 = Tensor.scaled_uniform(inter_chan,1,conv,conv)
self.c2 = Tensor.scaled_uniform(out_chan,inter_chan,conv,conv)
self.l1 = Tensor.scaled_uniform(out_chan*5*5, 10)
if has_batchnorm:
self.bn1 = BatchNorm2d(inter_chan)
self.bn2 = BatchNorm2d(out_chan)
else:
self.bn1, self.bn2 = lambda x: x, lambda x: x
def parameters(self):
return get_parameters(self)
def forward(self, x:Tensor):
x = x.reshape(shape=(-1, 1, 28, 28)) # hacks
x = self.bn1(x.conv2d(self.c1)).relu().max_pool2d()
x = self.bn2(x.conv2d(self.c2)).relu().max_pool2d()
x = x.reshape(shape=[x.shape[0], -1])
return x.dot(self.l1)
class TestMNIST(unittest.TestCase):
def test_sgd_onestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=1)
for p in model.parameters(): p.realize()
def test_sgd_threestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=3)
def test_sgd_sixstep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=6, noloss=True)
def test_adam_onestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=1)
for p in model.parameters(): p.realize()
def test_adam_threestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=3)
def test_conv_onestep(self):
np.random.seed(1337)
model = TinyConvNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=1, noloss=True)
for p in model.parameters(): p.realize()
def test_conv(self):
np.random.seed(1337)
model = TinyConvNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, steps=100)
assert evaluate(model, X_test, Y_test) > 0.93 # torch gets 0.9415 sometimes
def test_conv_with_bn(self):
np.random.seed(1337)
model = TinyConvNet(has_batchnorm=True)
optimizer = optim.AdamW(model.parameters(), lr=0.003)
train(model, X_train, Y_train, optimizer, steps=200)
assert evaluate(model, X_test, Y_test) > 0.94
def test_sgd(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, steps=600)
assert evaluate(model, X_test, Y_test) > 0.94 # CPU gets 0.9494 sometimes
if __name__ == '__main__':
unittest.main()