mirror of https://github.com/commaai/tinygrad.git
751 lines
53 KiB
Python
751 lines
53 KiB
Python
import json, logging, math, re, sys, time, wave, argparse, numpy as np
|
||
from phonemizer.phonemize import default_separator, _phonemize
|
||
from phonemizer.backend import EspeakBackend
|
||
from phonemizer.punctuation import Punctuation
|
||
from functools import reduce
|
||
from pathlib import Path
|
||
from typing import List
|
||
from tinygrad import nn
|
||
from tinygrad.helpers import dtypes, fetch
|
||
from tinygrad.nn.state import torch_load
|
||
from tinygrad.tensor import Tensor
|
||
from tinygrad.jit import TinyJit
|
||
from unidecode import unidecode
|
||
|
||
LRELU_SLOPE = 0.1
|
||
|
||
class Synthesizer:
|
||
def __init__(self, n_vocab, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, n_speakers=0, gin_channels=0, use_sdp=True, emotion_embedding=False, **kwargs):
|
||
self.n_vocab, self.spec_channels, self.inter_channels, self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout, self.resblock, self.resblock_kernel_sizes, self.resblock_dilation_sizes, self.upsample_rates, self.upsample_initial_channel, self.upsample_kernel_sizes, self.segment_size, self.n_speakers, self.gin_channels, self.use_sdp = n_vocab, spec_channels, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, segment_size, n_speakers, gin_channels, use_sdp
|
||
self.enc_p = TextEncoder(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, emotion_embedding)
|
||
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) if use_sdp else DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
||
if n_speakers > 1: self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
||
def infer(self, x, x_lengths, sid=None, noise_scale=1.0, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None, max_y_length_estimate_scale=None, pad_length=-1):
|
||
x, m_p, logs_p, x_mask = self.enc_p.forward(x.realize(), x_lengths.realize(), emotion_embedding.realize() if emotion_embedding is not None else emotion_embedding)
|
||
g = self.emb_g(sid.reshape(1, 1)).squeeze(1).unsqueeze(-1) if self.n_speakers > 0 else None
|
||
logw = self.dp.forward(x, x_mask.realize(), g=g.realize(), reverse=self.use_sdp, noise_scale=noise_scale_w if self.use_sdp else 1.0)
|
||
w_ceil = Tensor.ceil(logw.exp() * x_mask * length_scale)
|
||
y_lengths = Tensor.maximum(w_ceil.sum([1, 2]), 1).cast(dtypes.int64)
|
||
return self.generate(g, logs_p, m_p, max_len, max_y_length_estimate_scale, noise_scale, w_ceil, x, x_mask, y_lengths, pad_length)
|
||
def generate(self, g, logs_p, m_p, max_len, max_y_length_estimate_scale, noise_scale, w_ceil, x, x_mask, y_lengths, pad_length):
|
||
max_y_length = y_lengths.max().numpy() if max_y_length_estimate_scale is None else max(15, x.shape[-1]) * max_y_length_estimate_scale
|
||
y_mask = sequence_mask(y_lengths, max_y_length).unsqueeze(1).cast(x_mask.dtype)
|
||
attn_mask = x_mask.unsqueeze(2) * y_mask.unsqueeze(-1)
|
||
attn = generate_path(w_ceil, attn_mask)
|
||
m_p_2 = attn.squeeze(1).matmul(m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
||
logs_p_2 = attn.squeeze(1).matmul(logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
||
z_p = m_p_2 + Tensor.randn(*m_p_2.shape, dtype=m_p_2.dtype) * logs_p_2.exp() * noise_scale
|
||
row_len = y_mask.shape[2]
|
||
if pad_length > -1:
|
||
# Pad flow forward inputs to enable JIT
|
||
assert pad_length > row_len, "pad length is too small"
|
||
y_mask = y_mask.pad(((0, 0), (0, 0), (0, pad_length - row_len)), 0).cast(z_p.dtype)
|
||
# New y_mask tensor to remove sts mask
|
||
y_mask = Tensor(y_mask.numpy(), device=y_mask.device, dtype=y_mask.dtype, requires_grad=y_mask.requires_grad)
|
||
z_p = z_p.squeeze(0).pad(((0, 0), (0, pad_length - z_p.shape[2])), 1).unsqueeze(0)
|
||
z = self.flow.forward(z_p.realize(), y_mask.realize(), g=g.realize(), reverse=True)
|
||
result_length = reduce(lambda x, y: x * y, self.dec.upsample_rates, row_len)
|
||
o = self.dec.forward((z * y_mask)[:, :, :max_len], g=g)[:, :, :result_length]
|
||
if max_y_length_estimate_scale is not None:
|
||
length_scaler = o.shape[-1] / max_y_length
|
||
o.realize()
|
||
real_max_y_length = y_lengths.max().numpy()
|
||
if real_max_y_length > max_y_length:
|
||
logging.warning(f"Underestimated max length by {(((real_max_y_length / max_y_length) * 100) - 100):.2f}%, recomputing inference without estimate...")
|
||
return self.generate(g, logs_p, m_p, max_len, None, noise_scale, w_ceil, x, x_mask, y_lengths)
|
||
if real_max_y_length < max_y_length:
|
||
overestimation = ((max_y_length / real_max_y_length) * 100) - 100
|
||
logging.info(f"Overestimated max length by {overestimation:.2f}%")
|
||
if overestimation > 10: logging.warning("Warning: max length overestimated by more than 10%")
|
||
o = o[:, :, :(real_max_y_length * length_scaler).astype(np.int32)]
|
||
return o
|
||
|
||
class StochasticDurationPredictor:
|
||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
||
filter_channels = in_channels # it needs to be removed from future version.
|
||
self.in_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.n_flows, self.gin_channels = in_channels, filter_channels, kernel_size, p_dropout, n_flows, gin_channels
|
||
self.log_flow, self.flows = Log(), [ElementwiseAffine(2)]
|
||
for _ in range(n_flows):
|
||
self.flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||
self.flows.append(Flip())
|
||
self.post_pre, self.post_proj = nn.Conv1d(1, filter_channels, 1), nn.Conv1d(filter_channels, filter_channels, 1)
|
||
self.post_convs = DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||
self.post_flows = [ElementwiseAffine(2)]
|
||
for _ in range(4):
|
||
self.post_flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||
self.post_flows.append(Flip())
|
||
self.pre, self.proj = nn.Conv1d(in_channels, filter_channels, 1), nn.Conv1d(filter_channels, filter_channels, 1)
|
||
self.convs = DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
||
@TinyJit
|
||
def forward(self, x: Tensor, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
||
x = self.pre(x.detach())
|
||
if g is not None: x = x + self.cond(g.detach())
|
||
x = self.convs.forward(x, x_mask)
|
||
x = self.proj(x) * x_mask
|
||
if not reverse:
|
||
flows = self.flows
|
||
assert w is not None
|
||
log_det_tot_q = 0
|
||
h_w = self.post_proj(self.post_convs.forward(self.post_pre(w), x_mask)) * x_mask
|
||
e_q = Tensor.randn(w.size(0), 2, w.size(2), dtype=x.dtype).to(device=x.device) * x_mask
|
||
z_q = e_q
|
||
for flow in self.post_flows:
|
||
z_q, log_det_q = flow.forward(z_q, x_mask, g=(x + h_w))
|
||
log_det_tot_q += log_det_q
|
||
z_u, z1 = z_q.split([1, 1], 1)
|
||
u = z_u.sigmoid() * x_mask
|
||
z0 = (w - u) * x_mask
|
||
log_det_tot_q += Tensor.sum((z_u.logsigmoid() + (-z_u).logsigmoid()) * x_mask, [1,2])
|
||
log_q = Tensor.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - log_det_tot_q
|
||
log_det_tot = 0
|
||
z0, log_det = self.log_flow.forward(z0, x_mask)
|
||
log_det_tot += log_det
|
||
z = z0.cat(z1, 1)
|
||
for flow in flows:
|
||
z, log_det = flow.forward(z, x_mask, g=x, reverse=reverse)
|
||
log_det_tot = log_det_tot + log_det
|
||
nll = Tensor.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - log_det_tot
|
||
return (nll + log_q).realize() # [b]
|
||
flows = list(reversed(self.flows))
|
||
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||
z = Tensor.randn(x.shape[0], 2, x.shape[2], dtype=x.dtype).to(device=x.device) * noise_scale
|
||
for flow in flows: z = flow.forward(z, x_mask, g=x, reverse=reverse)
|
||
z0, z1 = split(z, [1, 1], 1)
|
||
return z0.realize()
|
||
|
||
class DurationPredictor:
|
||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
||
self.in_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.gin_channels = in_channels, filter_channels, kernel_size, p_dropout, gin_channels
|
||
self.conv_1, self.norm_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2), LayerNorm(filter_channels)
|
||
self.conv_2, self.norm_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2), LayerNorm(filter_channels)
|
||
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
||
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
||
def forward(self, x: Tensor, x_mask, g=None):
|
||
x = x.detach()
|
||
if g is not None: x = x + self.cond(g.detach())
|
||
x = self.conv_1(x * x_mask).relu()
|
||
x = self.norm_1(x).dropout(self.p_dropout)
|
||
x = self.conv_2(x * x_mask).relu(x)
|
||
x = self.norm_2(x).dropout(self.p_dropout)
|
||
return self.proj(x * x_mask) * x_mask
|
||
|
||
class TextEncoder:
|
||
def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, emotion_embedding):
|
||
self.n_vocab, self.out_channels, self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout = n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||
if n_vocab!=0:self.emb = nn.Embedding(n_vocab, hidden_channels)
|
||
if emotion_embedding: self.emo_proj = nn.Linear(1024, hidden_channels)
|
||
self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout)
|
||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||
@TinyJit
|
||
def forward(self, x: Tensor, x_lengths: Tensor, emotion_embedding=None):
|
||
if self.n_vocab!=0: x = (self.emb(x) * math.sqrt(self.hidden_channels))
|
||
if emotion_embedding: x = x + self.emo_proj(emotion_embedding).unsqueeze(1)
|
||
x = x.transpose(1, -1) # [b, t, h] -transpose-> [b, h, t]
|
||
x_mask = sequence_mask(x_lengths, x.shape[2]).unsqueeze(1).cast(x.dtype)
|
||
x = self.encoder.forward(x * x_mask, x_mask)
|
||
m, logs = split(self.proj(x) * x_mask, self.out_channels, dim=1)
|
||
return x.realize(), m.realize(), logs.realize(), x_mask.realize()
|
||
|
||
class ResidualCouplingBlock:
|
||
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0):
|
||
self.channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.n_flows, self.gin_channels = channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows, gin_channels
|
||
self.flows = []
|
||
for _ in range(n_flows):
|
||
self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
||
self.flows.append(Flip())
|
||
@TinyJit
|
||
def forward(self, x, x_mask, g=None, reverse=False):
|
||
for flow in reversed(self.flows) if reverse else self.flows: x = flow.forward(x, x_mask, g=g, reverse=reverse)
|
||
return x.realize()
|
||
|
||
class PosteriorEncoder:
|
||
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0):
|
||
self.in_channels, self.out_channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.gin_channels = in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels
|
||
self.pre, self.proj = nn.Conv1d(in_channels, hidden_channels, 1), nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||
def forward(self, x, x_lengths, g=None):
|
||
x_mask = sequence_mask(x_lengths, x.size(2)).unsqueeze(1).cast(x.dtype)
|
||
stats = self.proj(self.enc.forward(self.pre(x) * x_mask, x_mask, g=g)) * x_mask
|
||
m, logs = stats.split(self.out_channels, dim=1)
|
||
z = (m + Tensor.randn(m.shape, m.dtype) * logs.exp()) * x_mask
|
||
return z, m, logs, x_mask
|
||
|
||
class Generator:
|
||
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
||
self.num_kernels, self.num_upsamples = len(resblock_kernel_sizes), len(upsample_rates)
|
||
self.conv_pre = nn.Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
||
resblock = ResBlock1 if resblock == '1' else ResBlock2
|
||
self.ups = [nn.ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2) for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes))]
|
||
self.resblocks = []
|
||
self.upsample_rates = upsample_rates
|
||
for i in range(len(self.ups)):
|
||
ch = upsample_initial_channel // (2 ** (i + 1))
|
||
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||
self.resblocks.append(resblock(ch, k, d))
|
||
self.conv_post = nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
||
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||
@TinyJit
|
||
def forward(self, x: Tensor, g=None):
|
||
x = self.conv_pre(x)
|
||
if g is not None: x = x + self.cond(g)
|
||
for i in range(self.num_upsamples):
|
||
x = self.ups[i](x.leakyrelu(LRELU_SLOPE))
|
||
xs = sum(self.resblocks[i * self.num_kernels + j].forward(x) for j in range(self.num_kernels))
|
||
x = (xs / self.num_kernels).realize()
|
||
res = self.conv_post(x.leakyrelu()).tanh().realize()
|
||
return res
|
||
|
||
class LayerNorm(nn.LayerNorm):
|
||
def __init__(self, channels, eps=1e-5): super().__init__(channels, eps, elementwise_affine=True)
|
||
def forward(self, x: Tensor): return self.__call__(x.transpose(1, -1)).transpose(1, -1)
|
||
|
||
class WN:
|
||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
||
assert (kernel_size % 2 == 1)
|
||
self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.gin_channels, self.p_dropout = hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout
|
||
self.in_layers, self.res_skip_layers = [], []
|
||
if gin_channels != 0: self.cond_layer = nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
|
||
for i in range(n_layers):
|
||
dilation = dilation_rate ** i
|
||
self.in_layers.append(nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=int((kernel_size * dilation - dilation) / 2)))
|
||
self.res_skip_layers.append(nn.Conv1d(hidden_channels, 2 * hidden_channels if i < n_layers - 1 else hidden_channels, 1))
|
||
def forward(self, x, x_mask, g=None, **kwargs):
|
||
output = Tensor.zeros_like(x)
|
||
if g is not None: g = self.cond_layer(g)
|
||
for i in range(self.n_layers):
|
||
x_in = self.in_layers[i](x)
|
||
if g is not None:
|
||
cond_offset = i * 2 * self.hidden_channels
|
||
g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
|
||
else:
|
||
g_l = Tensor.zeros_like(x_in)
|
||
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, self.hidden_channels)
|
||
res_skip_acts = self.res_skip_layers[i](acts)
|
||
if i < self.n_layers - 1:
|
||
x = (x + res_skip_acts[:, :self.hidden_channels, :]) * x_mask
|
||
output = output + res_skip_acts[:, self.hidden_channels:, :]
|
||
else:
|
||
output = output + res_skip_acts
|
||
return output * x_mask
|
||
|
||
class ResBlock1:
|
||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||
self.convs1 = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[i], padding=get_padding(kernel_size, dilation[i])) for i in range(3)]
|
||
self.convs2 = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) for _ in range(3)]
|
||
def forward(self, x: Tensor, x_mask=None):
|
||
for c1, c2 in zip(self.convs1, self.convs2):
|
||
xt = x.leakyrelu(LRELU_SLOPE)
|
||
xt = c1(xt if x_mask is None else xt * x_mask).leakyrelu(LRELU_SLOPE)
|
||
x = c2(xt if x_mask is None else xt * x_mask) + x
|
||
return x if x_mask is None else x * x_mask
|
||
|
||
class ResBlock2:
|
||
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
||
self.convs = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[i], padding=get_padding(kernel_size, dilation[i])) for i in range(2)]
|
||
def forward(self, x, x_mask=None):
|
||
for c in self.convs:
|
||
xt = x.leaky_relu(LRELU_SLOPE)
|
||
xt = c(xt if x_mask is None else xt * x_mask)
|
||
x = xt + x
|
||
return x if x_mask is None else x * x_mask
|
||
|
||
class DDSConv: # Dilated and Depth-Separable Convolution
|
||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
||
self.channels, self.kernel_size, self.n_layers, self.p_dropout = channels, kernel_size, n_layers, p_dropout
|
||
self.convs_sep, self.convs_1x1, self.norms_1, self.norms_2 = [], [], [], []
|
||
for i in range(n_layers):
|
||
dilation = kernel_size ** i
|
||
padding = (kernel_size * dilation - dilation) // 2
|
||
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding))
|
||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||
self.norms_1.append(LayerNorm(channels))
|
||
self.norms_2.append(LayerNorm(channels))
|
||
def forward(self, x, x_mask, g=None):
|
||
if g is not None: x = x + g
|
||
for i in range(self.n_layers):
|
||
y = self.convs_sep[i](x * x_mask)
|
||
y = self.norms_1[i].forward(y).gelu()
|
||
y = self.convs_1x1[i](y)
|
||
y = self.norms_2[i].forward(y).gelu()
|
||
x = x + y.dropout(self.p_dropout)
|
||
return x * x_mask
|
||
|
||
class ConvFlow:
|
||
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
||
self.in_channels, self.filter_channels, self.kernel_size, self.n_layers, self.num_bins, self.tail_bound = in_channels, filter_channels, kernel_size, n_layers, num_bins, tail_bound
|
||
self.half_channels = in_channels // 2
|
||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
||
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||
def forward(self, x, x_mask, g=None, reverse=False):
|
||
x0, x1 = split(x, [self.half_channels] * 2, 1)
|
||
h = self.proj(self.convs.forward(self.pre(x0), x_mask, g=g)) * x_mask
|
||
b, c, t = x0.shape
|
||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||
un_normalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
||
un_normalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
||
un_normalized_derivatives = h[..., 2 * self.num_bins:]
|
||
x1, log_abs_det = piecewise_rational_quadratic_transform(x1, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=reverse, tails='linear', tail_bound=self.tail_bound)
|
||
x = x0.cat(x1, dim=1) * x_mask
|
||
return x if reverse else (x, Tensor.sum(log_abs_det * x_mask, [1,2]))
|
||
|
||
class ResidualCouplingLayer:
|
||
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False):
|
||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||
self.channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.mean_only = channels, hidden_channels, kernel_size, dilation_rate, n_layers, mean_only
|
||
self.half_channels = channels // 2
|
||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||
def forward(self, x, x_mask, g=None, reverse=False):
|
||
x0, x1 = split(x, [self.half_channels] * 2, 1)
|
||
stats = self.post(self.enc.forward(self.pre(x0) * x_mask, x_mask, g=g)) * x_mask
|
||
if not self.mean_only:
|
||
m, logs = split(stats, [self.half_channels] * 2, 1)
|
||
else:
|
||
m = stats
|
||
logs = Tensor.zeros_like(m)
|
||
if not reverse: return x0.cat((m + x1 * logs.exp() * x_mask), dim=1)
|
||
return x0.cat(((x1 - m) * (-logs).exp() * x_mask), dim=1)
|
||
|
||
class Log:
|
||
def forward(self, x : Tensor, x_mask, reverse=False):
|
||
if not reverse:
|
||
y = x.maximum(1e-5).log() * x_mask
|
||
return y, (-y).sum([1, 2])
|
||
return x.exp() * x_mask
|
||
|
||
class Flip:
|
||
def forward(self, x: Tensor, *args, reverse=False, **kwargs):
|
||
return x.flip([1]) if reverse else (x.flip([1]), Tensor.zeros(x.shape[0], dtype=x.dtype).to(device=x.device))
|
||
|
||
class ElementwiseAffine:
|
||
def __init__(self, channels): self.m, self.logs = Tensor.zeros(channels, 1), Tensor.zeros(channels, 1)
|
||
def forward(self, x, x_mask, reverse=False, **kwargs): # x if reverse else y, logdet
|
||
return (x - self.m) * Tensor.exp(-self.logs) * x_mask if reverse \
|
||
else ((self.m + Tensor.exp(self.logs) * x) * x_mask, Tensor.sum(self.logs * x_mask, [1, 2]))
|
||
|
||
class MultiHeadAttention:
|
||
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
||
assert channels % n_heads == 0
|
||
self.channels, self.out_channels, self.n_heads, self.p_dropout, self.window_size, self.heads_share, self.block_length, self.proximal_bias, self.proximal_init = channels, out_channels, n_heads, p_dropout, window_size, heads_share, block_length, proximal_bias, proximal_init
|
||
self.attn, self.k_channels = None, channels // n_heads
|
||
self.conv_q, self.conv_k, self.conv_v = [nn.Conv1d(channels, channels, 1) for _ in range(3)]
|
||
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||
if window_size is not None: self.emb_rel_k, self.emb_rel_v = [Tensor.randn(1 if heads_share else n_heads, window_size * 2 + 1, self.k_channels) * (self.k_channels ** -0.5) for _ in range(2)]
|
||
def forward(self, x, c, attn_mask=None):
|
||
q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c)
|
||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||
return self.conv_o(x)
|
||
def attention(self, query: Tensor, key: Tensor, value: Tensor, mask=None):# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||
b, d, t_s, t_t = key.shape[0], key.shape[1], key.shape[2], query.shape[2]
|
||
query = query.reshape(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||
key = key.reshape(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||
value = value.reshape(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||
scores = (query / math.sqrt(self.k_channels)) @ key.transpose(-2, -1)
|
||
if self.window_size is not None:
|
||
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||
rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
|
||
scores = scores + self._relative_position_to_absolute_position(rel_logits)
|
||
if mask is not None:
|
||
scores = Tensor.where(mask, scores, -1e4)
|
||
if self.block_length is not None:
|
||
assert t_s == t_t, "Local attention is only available for self-attention."
|
||
scores = Tensor.where(Tensor.ones_like(scores).triu(-self.block_length).tril(self.block_length), scores, -1e4)
|
||
p_attn = scores.softmax(axis=-1) # [b, n_h, t_t, t_s]
|
||
output = p_attn.matmul(value)
|
||
if self.window_size is not None:
|
||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
||
output = output.transpose(2, 3).contiguous().reshape(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||
return output, p_attn
|
||
def _matmul_with_relative_values(self, x, y): return x.matmul(y.unsqueeze(0)) # x: [b, h, l, m], y: [h or 1, m, d], ret: [b, h, l, d]
|
||
def _matmul_with_relative_keys(self, x, y): return x.matmul(y.unsqueeze(0).transpose(-2, -1)) # x: [b, h, l, d], y: [h or 1, m, d], re, : [b, h, l, m]
|
||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||
pad_length, slice_start_position = max(length - (self.window_size + 1), 0), max((self.window_size + 1) - length, 0)
|
||
padded_relative_embeddings = relative_embeddings if pad_length <= 0\
|
||
else relative_embeddings.pad(convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
||
return padded_relative_embeddings[:, slice_start_position:(slice_start_position + 2 * length - 1)] #used_relative_embeddings
|
||
def _relative_position_to_absolute_position(self, x: Tensor): # x: [b, h, l, 2*l-1] -> [b, h, l, l]
|
||
batch, heads, length, _ = x.shape
|
||
x = x.pad(convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
||
x_flat = x.reshape([batch, heads, length * 2 * length]).pad(convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
||
return x_flat.reshape([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
||
def _absolute_position_to_relative_position(self, x: Tensor): # x: [b, h, l, l] -> [b, h, l, 2*l-1]
|
||
batch, heads, length, _ = x.shape
|
||
x = x.pad(convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
||
x_flat = x.reshape([batch, heads, length**2 + length*(length -1)]).pad(convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||
return x_flat.reshape([batch, heads, length, 2*length])[:,:,:,1:]
|
||
|
||
class FFN:
|
||
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
||
self.in_channels, self.out_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.activation, self.causal = in_channels, out_channels, filter_channels, kernel_size, p_dropout, activation, causal
|
||
self.padding = self._causal_padding if causal else self._same_padding
|
||
self.conv_1, self.conv_2 = nn.Conv1d(in_channels, filter_channels, kernel_size), nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||
def forward(self, x, x_mask):
|
||
x = self.conv_1(self.padding(x * x_mask))
|
||
x = x * (1.702 * x).sigmoid() if self.activation == "gelu" else x.relu()
|
||
return self.conv_2(self.padding(x.dropout(self.p_dropout) * x_mask)) * x_mask
|
||
def _causal_padding(self, x):return x if self.kernel_size == 1 else x.pad(convert_pad_shape([[0, 0], [0, 0], [self.kernel_size - 1, 0]]))
|
||
def _same_padding(self, x): return x if self.kernel_size == 1 else x.pad(convert_pad_shape([[0, 0], [0, 0], [(self.kernel_size - 1) // 2, self.kernel_size // 2]]))
|
||
|
||
class Encoder:
|
||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
||
self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout, self.window_size = hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, window_size
|
||
self.attn_layers, self.norm_layers_1, self.ffn_layers, self.norm_layers_2 = [], [], [], []
|
||
for _ in range(n_layers):
|
||
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||
def forward(self, x, x_mask):
|
||
attn_mask, x = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1), x * x_mask
|
||
for i in range(self.n_layers):
|
||
y = self.attn_layers[i].forward(x, x, attn_mask).dropout(self.p_dropout)
|
||
x = self.norm_layers_1[i].forward(x + y)
|
||
y = self.ffn_layers[i].forward(x, x_mask).dropout(self.p_dropout)
|
||
x = self.norm_layers_2[i].forward(x + y)
|
||
return x * x_mask
|
||
|
||
DEFAULT_MIN_BIN_WIDTH, DEFAULT_MIN_BIN_HEIGHT, DEFAULT_MIN_DERIVATIVE = 1e-3, 1e-3, 1e-3
|
||
def piecewise_rational_quadratic_transform(inputs, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=False, tails=None, tail_bound=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||
if tails is None: spline_fn, spline_kwargs = rational_quadratic_spline, {}
|
||
else: spline_fn, spline_kwargs = unconstrained_rational_quadratic_spline, {'tails': tails, 'tail_bound': tail_bound}
|
||
return spline_fn(inputs=inputs, un_normalized_widths=un_normalized_widths, un_normalized_heights=un_normalized_heights, un_normalized_derivatives=un_normalized_derivatives, inverse=inverse, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative, **spline_kwargs)
|
||
def unconstrained_rational_quadratic_spline(inputs, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=False, tails='linear', tail_bound=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||
if not tails == 'linear': raise RuntimeError('{} tails are not implemented.'.format(tails))
|
||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||
un_normalized_derivatives = cat_lr(un_normalized_derivatives, constant, constant)
|
||
output, log_abs_det = rational_quadratic_spline(inputs=inputs.squeeze(dim=0).squeeze(dim=0), unnormalized_widths=un_normalized_widths.squeeze(dim=0).squeeze(dim=0), unnormalized_heights=un_normalized_heights.squeeze(dim=0).squeeze(dim=0), unnormalized_derivatives=un_normalized_derivatives.squeeze(dim=0).squeeze(dim=0), inverse=inverse, left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative)
|
||
return output.unsqueeze(dim=0).unsqueeze(dim=0), log_abs_det.unsqueeze(dim=0).unsqueeze(dim=0)
|
||
def rational_quadratic_spline(inputs: Tensor, unnormalized_widths: Tensor, unnormalized_heights: Tensor, unnormalized_derivatives: Tensor, inverse=False, left=0., right=1., bottom=0., top=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||
num_bins = unnormalized_widths.shape[-1]
|
||
if min_bin_width * num_bins > 1.0: raise ValueError('Minimal bin width too large for the number of bins')
|
||
if min_bin_height * num_bins > 1.0: raise ValueError('Minimal bin height too large for the number of bins')
|
||
widths = min_bin_width + (1 - min_bin_width * num_bins) * unnormalized_widths.softmax(axis=-1)
|
||
cum_widths = cat_lr(((right - left) * widths[..., :-1].cumsum(axis=1) + left), left, right + 1e-6 if not inverse else right)
|
||
widths = cum_widths[..., 1:] - cum_widths[..., :-1]
|
||
derivatives = min_derivative + (unnormalized_derivatives.exp()+1).log()
|
||
heights = min_bin_height + (1 - min_bin_height * num_bins) * unnormalized_heights.softmax(axis=-1)
|
||
cum_heights = cat_lr(((top - bottom) * heights[..., :-1].cumsum(axis=1) + bottom), bottom, top + 1e-6 if inverse else top)
|
||
heights = cum_heights[..., 1:] - cum_heights[..., :-1]
|
||
bin_idx = ((inputs[..., None] >= (cum_heights if inverse else cum_widths)).sum(axis=-1) - 1)[..., None]
|
||
input_cum_widths = gather(cum_widths, bin_idx, axis=-1)[..., 0]
|
||
input_bin_widths = gather(widths, bin_idx, axis=-1)[..., 0]
|
||
input_cum_heights = gather(cum_heights, bin_idx, axis=-1)[..., 0]
|
||
input_delta = gather(heights / widths, bin_idx, axis=-1)[..., 0]
|
||
input_derivatives = gather(derivatives, bin_idx, axis=-1)[..., 0]
|
||
input_derivatives_plus_one = gather(derivatives[..., 1:], bin_idx, axis=-1)[..., 0]
|
||
input_heights = gather(heights, bin_idx, axis=-1)[..., 0]
|
||
if inverse:
|
||
a = ((inputs - input_cum_heights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + input_heights * (input_delta - input_derivatives))
|
||
b = (input_heights * input_derivatives - (inputs - input_cum_heights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta))
|
||
c = - input_delta * (inputs - input_cum_heights)
|
||
discriminant = b.square() - 4 * a * c
|
||
# assert (discriminant.numpy() >= 0).all()
|
||
root = (2 * c) / (-b - discriminant.sqrt())
|
||
theta_one_minus_theta = root * (1 - root)
|
||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
|
||
derivative_numerator = input_delta.square() * (input_derivatives_plus_one * root.square() + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - root).square())
|
||
return root * input_bin_widths + input_cum_widths, -(derivative_numerator.log() - 2 * denominator.log())
|
||
theta = (inputs - input_cum_widths) / input_bin_widths
|
||
theta_one_minus_theta = theta * (1 - theta)
|
||
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
|
||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
|
||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - theta).pow(2))
|
||
return input_cum_heights + numerator / denominator, derivative_numerator.log() - 2 * denominator.log()
|
||
|
||
def sequence_mask(length: Tensor, max_length): return Tensor.arange(max_length, dtype=length.dtype, device=length.device).unsqueeze(0) < length.unsqueeze(1)
|
||
def generate_path(duration: Tensor, mask: Tensor): # duration: [b, 1, t_x], mask: [b, 1, t_y, t_x]
|
||
b, _, t_y, t_x = mask.shape
|
||
path = sequence_mask(duration.cumsum(axis=2).reshape(b * t_x), t_y).cast(mask.dtype).reshape(b, t_x, t_y)
|
||
path = path - path.pad(convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||
return path.unsqueeze(1).transpose(2, 3) * mask
|
||
def fused_add_tanh_sigmoid_multiply(input_a: Tensor, input_b: Tensor, n_channels: int):
|
||
n_channels_int, in_act = n_channels, input_a + input_b
|
||
t_act, s_act = in_act[:, :n_channels_int, :].tanh(), in_act[:, n_channels_int:, :].sigmoid()
|
||
return t_act * s_act
|
||
|
||
def cat_lr(t, left, right): return Tensor.full(get_shape(t), left).cat(t, dim=-1).cat(Tensor.full(get_shape(t), right), dim=-1)
|
||
def get_shape(tensor):
|
||
(shape := list(tensor.shape))[-1] = 1
|
||
return tuple(shape)
|
||
def convert_pad_shape(pad_shape): return tuple(tuple(x) for x in pad_shape)
|
||
def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2)
|
||
def split(tensor, split_sizes, dim=0): # if split_sizes is an integer, convert it to a tuple of size split_sizes elements
|
||
if isinstance(split_sizes, int): split_sizes = (split_sizes,) * (tensor.shape[dim] // split_sizes)
|
||
assert sum(split_sizes) == tensor.shape[
|
||
dim], "Sum of split_sizes must equal the dimension size of tensor along the given dimension."
|
||
start, slices = 0, []
|
||
for size in split_sizes:
|
||
slice_range = [(start, start + size) if j == dim else None for j in range(len(tensor.shape))]
|
||
slices.append(slice_range)
|
||
start += size
|
||
return [tensor.slice(s) for s in slices]
|
||
def gather(x, indices, axis):
|
||
indices = (indices < 0).where(indices + x.shape[axis], indices).transpose(ax1=axis, ax2=0)
|
||
permute_args = list(range(x.ndim))
|
||
permute_args[0], permute_args[axis] = permute_args[axis], permute_args[0]
|
||
permute_args.append(permute_args.pop(0))
|
||
x = x.permute(*permute_args)
|
||
reshape_arg = [1] * x.ndim + [x.shape[-1]]
|
||
return ((indices.unsqueeze(indices.ndim).expand(*indices.shape, x.shape[-1]) ==
|
||
Tensor.arange(x.shape[-1]).reshape(*reshape_arg).expand(*indices.shape, x.shape[-1])) * x).sum(indices.ndim).transpose(ax1=0, ax2=axis)
|
||
|
||
def norm_except_dim(v, dim):
|
||
if dim == -1: return np.linalg.norm(v)
|
||
if dim == 0:
|
||
(output_shape := [1] * v.ndim)[0] = v.shape[0]
|
||
return np.linalg.norm(v.reshape(v.shape[0], -1), axis=1).reshape(output_shape)
|
||
if dim == v.ndim - 1:
|
||
(output_shape := [1] * v.ndim)[-1] = v.shape[-1]
|
||
return np.linalg.norm(v.reshape(-1, v.shape[-1]), axis=0).reshape(output_shape)
|
||
transposed_v = np.transpose(v, (dim,) + tuple(i for i in range(v.ndim) if i != dim))
|
||
return np.transpose(norm_except_dim(transposed_v, 0), (dim,) + tuple(i for i in range(v.ndim) if i != dim))
|
||
def weight_norm(v: Tensor, g: Tensor, dim):
|
||
v, g = v.numpy(), g.numpy()
|
||
return Tensor(v * (g / norm_except_dim(v, dim)))
|
||
|
||
# HPARAMS LOADING
|
||
def get_hparams_from_file(path):
|
||
with open(path, "r") as f:
|
||
data = f.read()
|
||
return HParams(**json.loads(data))
|
||
class HParams:
|
||
def __init__(self, **kwargs):
|
||
for k, v in kwargs.items(): self[k] = v if type(v) != dict else HParams(**v)
|
||
def keys(self): return self.__dict__.keys()
|
||
def items(self): return self.__dict__.items()
|
||
def values(self): return self.__dict__.values()
|
||
def __len__(self): return len(self.__dict__)
|
||
def __getitem__(self, key): return getattr(self, key)
|
||
def __setitem__(self, key, value): return setattr(self, key, value)
|
||
def __contains__(self, key): return key in self.__dict__
|
||
def __repr__(self): return self.__dict__.__repr__()
|
||
|
||
# MODEL LOADING
|
||
def load_model(symbols, hps, model) -> Synthesizer:
|
||
net_g = Synthesizer(len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers = hps.data.n_speakers, **hps.model)
|
||
_ = load_checkpoint(fetch(model[1]), net_g, None)
|
||
return net_g
|
||
def load_checkpoint(checkpoint_path, model: Synthesizer, optimizer=None, skip_list=[]):
|
||
assert Path(checkpoint_path).is_file()
|
||
start_time = time.time()
|
||
checkpoint_dict = torch_load(checkpoint_path)
|
||
iteration, learning_rate = checkpoint_dict['iteration'], checkpoint_dict['learning_rate']
|
||
if optimizer: optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||
saved_state_dict = checkpoint_dict['model']
|
||
weight_g, weight_v, parent = None, None, None
|
||
for key, v in saved_state_dict.items():
|
||
if any(layer in key for layer in skip_list): continue
|
||
try:
|
||
obj, skip = model, False
|
||
for k in key.split('.'):
|
||
if k.isnumeric(): obj = obj[int(k)]
|
||
elif isinstance(obj, dict): obj = obj[k]
|
||
else:
|
||
if isinstance(obj, (LayerNorm, nn.LayerNorm)) and k in ["gamma", "beta"]:
|
||
k = "weight" if k == "gamma" else "bias"
|
||
elif k in ["weight_g", "weight_v"]:
|
||
parent, skip = obj, True
|
||
if k == "weight_g": weight_g = v
|
||
else: weight_v = v
|
||
if not skip: obj = getattr(obj, k)
|
||
if weight_g and weight_v:
|
||
setattr(obj, "weight_g", weight_g.numpy())
|
||
setattr(obj, "weight_v", weight_v.numpy())
|
||
obj, v = getattr(parent, "weight"), weight_norm(weight_v, weight_g, 0)
|
||
weight_g, weight_v, parent, skip = None, None, None, False
|
||
if not skip and obj.shape == v.shape: obj.assign(v.to(obj.device))
|
||
elif not skip: logging.error(f"MISMATCH SHAPE IN {key}, {obj.shape} {v.shape}")
|
||
except Exception as e: raise e
|
||
logging.info(f"Loaded checkpoint '{checkpoint_path}' (iteration {iteration}) in {time.time() - start_time:.4f}s")
|
||
return model, optimizer, learning_rate, iteration
|
||
|
||
# Used for cleaning input text and mapping to symbols
|
||
class TextMapper: # Based on https://github.com/keithito/tacotron
|
||
def __init__(self, symbols, apply_cleaners=True):
|
||
self.apply_cleaners, self.symbols, self._inflect = apply_cleaners, symbols, None
|
||
self._symbol_to_id, _id_to_symbol = {s: i for i, s in enumerate(symbols)}, {i: s for i, s in enumerate(symbols)}
|
||
self._whitespace_re, self._abbreviations = re.compile(r'\s+'), [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [('mrs', 'misess'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ]]
|
||
self.phonemizer = EspeakBackend(
|
||
language="en-us", punctuation_marks=Punctuation.default_marks(), preserve_punctuation=True, with_stress=True,
|
||
)
|
||
def text_to_sequence(self, text, cleaner_names):
|
||
if self.apply_cleaners:
|
||
for name in cleaner_names:
|
||
cleaner = getattr(self, name)
|
||
if not cleaner: raise ModuleNotFoundError('Unknown cleaner: %s' % name)
|
||
text = cleaner(text)
|
||
else: text = text.strip()
|
||
return [self._symbol_to_id[symbol] for symbol in text]
|
||
def get_text(self, text, add_blank=False, cleaners=('english_cleaners2',)):
|
||
text_norm = self.text_to_sequence(text, cleaners)
|
||
return Tensor(self.intersperse(text_norm, 0) if add_blank else text_norm, dtype=dtypes.int64)
|
||
def intersperse(self, lst, item):
|
||
(result := [item] * (len(lst) * 2 + 1))[1::2] = lst
|
||
return result
|
||
def phonemize(self, text, strip=True): return _phonemize(self.phonemizer, text, default_separator, strip, 1, False, False)
|
||
def filter_oov(self, text): return "".join(list(filter(lambda x: x in self._symbol_to_id, text)))
|
||
def base_english_cleaners(self, text): return self.collapse_whitespace(self.phonemize(self.expand_abbreviations(unidecode(text.lower()))))
|
||
def english_cleaners2(self, text): return self.base_english_cleaners(text)
|
||
def transliteration_cleaners(self, text): return self.collapse_whitespace(unidecode(text.lower()))
|
||
def cjke_cleaners(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_ipa2(text).replace('ɑ', 'a').replace('ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')))
|
||
def cjke_cleaners2(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_ipa2(text)))
|
||
def cjks_cleaners(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_lazy_ipa(text)))
|
||
def english_to_ipa2(self, text):
|
||
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [ ('r', 'ɹ'), ('ʤ', 'dʒ'), ('ʧ', 'tʃ')]]
|
||
return reduce(lambda t, rx: re.sub(rx[0], rx[1], t), _ipa_to_ipa2, self.mark_dark_l(self.english_to_ipa(text))).replace('...', '…')
|
||
def mark_dark_l(self, text): return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ' + x.group(1), text)
|
||
def english_to_ipa(self, text):
|
||
import eng_to_ipa as ipa
|
||
return self.collapse_whitespace(ipa.convert(self.normalize_numbers(self.expand_abbreviations(unidecode(text).lower()))))
|
||
def english_to_lazy_ipa(self, text):
|
||
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [('r', 'ɹ'), ('æ', 'e'), ('ɑ', 'a'), ('ɔ', 'o'), ('ð', 'z'), ('θ', 's'), ('ɛ', 'e'), ('ɪ', 'i'), ('ʊ', 'u'), ('ʒ', 'ʥ'), ('ʤ', 'ʥ'), ('ˈ', '↓')]]
|
||
return reduce(lambda t, rx: re.sub(rx[0], rx[1], t), _lazy_ipa, self.english_to_ipa(text))
|
||
def expand_abbreviations(self, text): return reduce(lambda t, abbr: re.sub(abbr[0], abbr[1], t), self._abbreviations, text)
|
||
def collapse_whitespace(self, text): return re.sub(self._whitespace_re, ' ', text)
|
||
def normalize_numbers(self, text):
|
||
import inflect
|
||
self._inflect = inflect.engine()
|
||
text = re.sub(re.compile(r'([0-9][0-9\,]+[0-9])'), self._remove_commas, text)
|
||
text = re.sub(re.compile(r'£([0-9\,]*[0-9]+)'), r'\1 pounds', text)
|
||
text = re.sub(re.compile(r'\$([0-9\.\,]*[0-9]+)'), self._expand_dollars, text)
|
||
text = re.sub(re.compile(r'([0-9]+\.[0-9]+)'), self._expand_decimal_point, text)
|
||
text = re.sub(re.compile(r'[0-9]+(st|nd|rd|th)'), self._expand_ordinal, text)
|
||
text = re.sub(re.compile(r'[0-9]+'), self._expand_number, text)
|
||
return text
|
||
def _remove_commas(self, m): return m.group(1).replace(',', '') # george won't like this
|
||
def _expand_dollars(self, m):
|
||
match = m.group(1)
|
||
parts = match.split('.')
|
||
if len(parts) > 2: return match + ' dollars' # Unexpected format
|
||
dollars, cents = int(parts[0]) if parts[0] else 0, int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
||
if dollars and cents: return '%s %s, %s %s' % (dollars, 'dollar' if dollars == 1 else 'dollars', cents, 'cent' if cents == 1 else 'cents')
|
||
if dollars: return '%s %s' % (dollars, 'dollar' if dollars == 1 else 'dollars')
|
||
if cents: return '%s %s' % (cents, 'cent' if cents == 1 else 'cents')
|
||
return 'zero dollars'
|
||
def _expand_decimal_point(self, m): return m.group(1).replace('.', ' point ')
|
||
def _expand_ordinal(self, m): return self._inflect.number_to_words(m.group(0))
|
||
def _expand_number(self, _inflect, m):
|
||
num = int(m.group(0))
|
||
if 1000 < num < 3000:
|
||
if num == 2000: return 'two thousand'
|
||
if 2000 < num < 2010: return 'two thousand ' + self._inflect.number_to_words(num % 100)
|
||
if num % 100 == 0: return self._inflect.number_to_words(num // 100) + ' hundred'
|
||
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
|
||
return self._inflect.number_to_words(num, andword='')
|
||
|
||
#########################################################################################
|
||
# PAPER: https://arxiv.org/abs/2106.06103
|
||
# CODE: https://github.com/jaywalnut310/vits/tree/main
|
||
#########################################################################################
|
||
# INSTALLATION: this is based on default config, dependencies are for preprocessing.
|
||
# vctk, ljs | pip3 install unidecode phonemizer | phonemizer requires [eSpeak](https://espeak.sourceforge.net) backend to be installed on your system
|
||
# mmts-tts | pip3 install unidecode |
|
||
# uma_trilingual, cjks, voistock | pip3 install unidecode inflect eng_to_ipa |
|
||
#########################################################################################
|
||
# Some good speakers to try out, there may be much better ones, I only tried out a few:
|
||
# male vctk 1 | --model_to_use vctk --speaker_id 2
|
||
# male vctk 2 | --model_to_use vctk --speaker_id 6
|
||
# anime lady 1 | --model_to_use uma_trilingual --speaker_id 36
|
||
# anime lady 2 | --model_to_use uma_trilingual --speaker_id 121
|
||
#########################################################################################
|
||
VITS_PATH = Path(__file__).parents[1] / "weights/VITS/"
|
||
MODELS = { # config_url, weights_url
|
||
"ljs": ("https://raw.githubusercontent.com/jaywalnut310/vits/main/configs/ljs_base.json", "https://drive.google.com/uc?export=download&id=1q86w74Ygw2hNzYP9cWkeClGT5X25PvBT&confirm=t"),
|
||
"vctk": ("https://raw.githubusercontent.com/jaywalnut310/vits/main/configs/vctk_base.json", "https://drive.google.com/uc?export=download&id=11aHOlhnxzjpdWDpsz1vFDCzbeEfoIxru&confirm=t"),
|
||
"mmts-tts": ("https://huggingface.co/facebook/mms-tts/raw/main/full_models/eng/config.json", "https://huggingface.co/facebook/mms-tts/resolve/main/full_models/eng/G_100000.pth"),
|
||
"uma_trilingual": ("https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/raw/main/configs/uma_trilingual.json", "https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/resolve/main/pretrained_models/G_trilingual.pth"),
|
||
"cjks": ("https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/14/config.json", "https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/14/model.pth"),
|
||
"voistock": ("https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/15/config.json", "https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/15/model.pth"),
|
||
}
|
||
Y_LENGTH_ESTIMATE_SCALARS = {"ljs": 2.8, "vctk": 1.74, "mmts-tts": 1.9, "uma_trilingual": 2.3, "cjks": 3.3, "voistock": 3.1}
|
||
if __name__ == '__main__':
|
||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--model_to_use", default="vctk", help="Specify the model to use. Default is 'vctk'.")
|
||
parser.add_argument("--speaker_id", type=int, default=6, help="Specify the speaker ID. Default is 6.")
|
||
parser.add_argument("--out_path", default=None, help="Specify the full output path. Overrides the --out_dir and --name parameter.")
|
||
parser.add_argument("--out_dir", default=str(Path(__file__).parents[1] / "temp"), help="Specify the output path.")
|
||
parser.add_argument("--base_name", default="test", help="Specify the base of the output file name. Default is 'test'.")
|
||
parser.add_argument("--text_to_synthesize", default="""Hello person. If the code you are contributing isn't some of the highest quality code you've written in your life, either put in the effort to make it great, or don't bother.""", help="Specify the text to synthesize. Default is a greeting message.")
|
||
parser.add_argument("--noise_scale", type=float, default=0.667, help="Specify the noise scale. Default is 0.667.")
|
||
parser.add_argument("--noise_scale_w", type=float, default=0.8, help="Specify the noise scale w. Default is 0.8.")
|
||
parser.add_argument("--length_scale", type=float, default=1, help="Specify the length scale. Default is 1.")
|
||
parser.add_argument("--seed", type=int, default=1337, help="Specify the seed (set to None if no seed). Default is 1337.")
|
||
parser.add_argument("--num_channels", type=int, default=1, help="Specify the number of audio output channels. Default is 1.")
|
||
parser.add_argument("--sample_width", type=int, default=2, help="Specify the number of bytes per sample, adjust if necessary. Default is 2.")
|
||
parser.add_argument("--emotion_path", type=str, default=None, help="Specify the path to emotion reference.")
|
||
parser.add_argument("--estimate_max_y_length", type=str, default=False, help="If true, overestimate the output length and then trim it to the correct length, to prevent premature realization, much more performant for larger inputs, for smaller inputs not so much. Default is False.")
|
||
args = parser.parse_args()
|
||
|
||
model_config = MODELS[args.model_to_use]
|
||
|
||
# Load the hyperparameters from the config file.
|
||
hps = get_hparams_from_file(fetch(model_config[0]))
|
||
|
||
# If model has multiple speakers, validate speaker id and retrieve name if available.
|
||
model_has_multiple_speakers = hps.data.n_speakers > 0
|
||
if model_has_multiple_speakers:
|
||
logging.info(f"Model has {hps.data.n_speakers} speakers")
|
||
if args.speaker_id >= hps.data.n_speakers: raise ValueError(f"Speaker ID {args.speaker_id} is invalid for this model.")
|
||
speaker_name = "?"
|
||
if hps.__contains__("speakers"): # maps speaker ids to names
|
||
speakers = hps.speakers
|
||
if isinstance(speakers, List): speakers = {speaker: i for i, speaker in enumerate(speakers)}
|
||
speaker_name = next((key for key, value in speakers.items() if value == args.speaker_id), None)
|
||
logging.info(f"You selected speaker {args.speaker_id} (name: {speaker_name})")
|
||
|
||
# Load emotions if any. TODO: find an english model with emotions, this is untested atm.
|
||
emotion_embedding = None
|
||
if args.emotion_path is not None:
|
||
if args.emotion_path.endswith(".npy"): emotion_embedding = Tensor(np.load(args.emotion_path), dtype=dtypes.int64).unsqueeze(0)
|
||
else: raise ValueError("Emotion path must be a .npy file.")
|
||
|
||
# Load symbols, instantiate TextMapper and clean the text.
|
||
if hps.__contains__("symbols"): symbols = hps.symbols
|
||
elif args.model_to_use == "mmts-tts": symbols = [x.replace("\n", "") for x in fetch("https://huggingface.co/facebook/mms-tts/raw/main/full_models/eng/vocab.txt").open(encoding="utf-8").readlines()]
|
||
else: symbols = ['_'] + list(';:,.!?¡¿—…"«»“” ') + list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz') + list("ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ")
|
||
text_mapper = TextMapper(apply_cleaners=True, symbols=symbols)
|
||
|
||
# Load the model.
|
||
Tensor.no_grad = True
|
||
if args.seed is not None:
|
||
Tensor.manual_seed(args.seed)
|
||
np.random.seed(args.seed)
|
||
net_g = load_model(text_mapper.symbols, hps, model_config)
|
||
logging.debug(f"Loaded model with hps: {hps}")
|
||
|
||
# Convert the input text to a tensor.
|
||
text_to_synthesize = args.text_to_synthesize
|
||
if args.model_to_use == "mmts-tts": text_to_synthesize = text_mapper.filter_oov(text_to_synthesize.lower())
|
||
stn_tst = text_mapper.get_text(text_to_synthesize, hps.data.add_blank, hps.data.text_cleaners)
|
||
logging.debug(f"Converted input text to tensor \"{text_to_synthesize}\" -> Tensor({stn_tst.shape}): {stn_tst.numpy()}")
|
||
x_tst, x_tst_lengths = stn_tst.unsqueeze(0), Tensor([stn_tst.shape[0]], dtype=dtypes.int64)
|
||
sid = Tensor([args.speaker_id], dtype=dtypes.int64) if model_has_multiple_speakers else None
|
||
|
||
# Perform inference.
|
||
start_time = time.time()
|
||
audio_tensor = net_g.infer(x_tst, x_tst_lengths, sid, args.noise_scale, args.length_scale, args.noise_scale_w, emotion_embedding=emotion_embedding,
|
||
max_y_length_estimate_scale=Y_LENGTH_ESTIMATE_SCALARS[args.model_to_use] if args.estimate_max_y_length else None)[0, 0].realize()
|
||
logging.info(f"Inference took {(time.time() - start_time):.2f}s")
|
||
|
||
# Save the audio output.
|
||
audio_data = (np.clip(audio_tensor.numpy(), -1.0, 1.0) * 32767).astype(np.int16)
|
||
out_path = Path(args.out_path or Path(args.out_dir)/f"{args.model_to_use}{f'_sid_{args.speaker_id}' if model_has_multiple_speakers else ''}_{args.base_name}.wav")
|
||
out_path.parent.mkdir(parents=True, exist_ok=True)
|
||
with wave.open(str(out_path), 'wb') as wav_file:
|
||
wav_file.setnchannels(args.num_channels)
|
||
wav_file.setsampwidth(args.sample_width)
|
||
wav_file.setframerate(hps.data.sampling_rate)
|
||
wav_file.setnframes(len(audio_data))
|
||
wav_file.writeframes(audio_data.tobytes())
|
||
logging.info(f"Saved audio output to {out_path}")
|