tinygrad/examples/mlperf/model_eval.py

244 lines
8.3 KiB
Python

import time
from pathlib import Path
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad.jit import TinyJit
from tinygrad.helpers import getenv, dtypes
from examples.mlperf import helpers
def eval_resnet():
# Resnet50-v1.5
from tinygrad.jit import TinyJit
from models.resnet import ResNet50
mdl = ResNet50()
mdl.load_from_pretrained()
input_mean = Tensor([0.485, 0.456, 0.406]).reshape(1, -1, 1, 1)
input_std = Tensor([0.229, 0.224, 0.225]).reshape(1, -1, 1, 1)
def input_fixup(x):
x = x.permute([0,3,1,2]).cast(dtypes.float32) / 255.0
x -= input_mean
x /= input_std
return x
mdlrun = lambda x: mdl(input_fixup(x)).realize()
mdljit = TinyJit(mdlrun)
# evaluation on the mlperf classes of the validation set from imagenet
from extra.datasets.imagenet import iterate
from extra.helpers import cross_process
BS = 64
n,d = 0,0
st = time.perf_counter()
iterator = cross_process(lambda: iterate(BS))
x,ny = next(iterator)
dat = Tensor(x)
while dat is not None:
y = ny
mt = time.perf_counter()
outs = mdlrun(dat) if dat.shape[0] != BS else mdljit(dat)
try:
x,ny = next(iterator)
dat = Tensor(x)
except StopIteration:
dat = None
t = outs.argmax(axis=1).numpy()
et = time.perf_counter()
print(f"{(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model")
print(t)
print(y)
n += (t==y).sum()
d += len(t)
print(f"****** {n}/{d} {n*100.0/d:.2f}%")
st = time.perf_counter()
def eval_unet3d():
# UNet3D
from models.unet3d import UNet3D
from extra.datasets.kits19 import iterate, sliding_window_inference
from examples.mlperf.metrics import get_dice_score
mdl = UNet3D()
mdl.load_from_pretrained()
s = 0
st = time.perf_counter()
for i, (image, label) in enumerate(iterate(), start=1):
mt = time.perf_counter()
pred, label = sliding_window_inference(mdl, image, label)
et = time.perf_counter()
print(f"{(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model")
s += get_dice_score(pred, label).mean()
print(f"****** {s:.2f}/{i} {s/i:.5f} Mean DICE score")
st = time.perf_counter()
def eval_retinanet():
# RetinaNet with ResNeXt50_32X4D
from models.resnet import ResNeXt50_32X4D
from models.retinanet import RetinaNet
mdl = RetinaNet(ResNeXt50_32X4D())
mdl.load_from_pretrained()
input_mean = Tensor([0.485, 0.456, 0.406]).reshape(1, -1, 1, 1)
input_std = Tensor([0.229, 0.224, 0.225]).reshape(1, -1, 1, 1)
def input_fixup(x):
x = x.permute([0,3,1,2]) / 255.0
x -= input_mean
x /= input_std
return x
from extra.datasets.openimages import openimages, iterate
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from contextlib import redirect_stdout
coco = COCO(openimages())
coco_eval = COCOeval(coco, iouType="bbox")
coco_evalimgs, evaluated_imgs, ncats, narea = [], [], len(coco_eval.params.catIds), len(coco_eval.params.areaRng)
from tinygrad.jit import TinyJit
mdlrun = TinyJit(lambda x: mdl(input_fixup(x)).realize())
n, bs = 0, 8
st = time.perf_counter()
for x, targets in iterate(coco, bs):
dat = Tensor(x.astype(np.float32))
mt = time.perf_counter()
if dat.shape[0] == bs:
outs = mdlrun(dat).numpy()
else:
mdlrun.jit_cache = None
outs = mdl(input_fixup(dat)).numpy()
et = time.perf_counter()
predictions = mdl.postprocess_detections(outs, input_size=dat.shape[1:3], orig_image_sizes=[t["image_size"] for t in targets])
ext = time.perf_counter()
n += len(targets)
print(f"[{n}/{len(coco.imgs)}] == {(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model, {(ext-et)*1000:.2f} ms for postprocessing")
img_ids = [t["image_id"] for t in targets]
coco_results = [{"image_id": targets[i]["image_id"], "category_id": label, "bbox": box, "score": score}
for i, prediction in enumerate(predictions) for box, score, label in zip(*prediction.values())]
with redirect_stdout(None):
coco_eval.cocoDt = coco.loadRes(coco_results)
coco_eval.params.imgIds = img_ids
coco_eval.evaluate()
evaluated_imgs.extend(img_ids)
coco_evalimgs.append(np.array(coco_eval.evalImgs).reshape(ncats, narea, len(img_ids)))
st = time.perf_counter()
coco_eval.params.imgIds = evaluated_imgs
coco_eval._paramsEval.imgIds = evaluated_imgs
coco_eval.evalImgs = list(np.concatenate(coco_evalimgs, -1).flatten())
coco_eval.accumulate()
coco_eval.summarize()
def eval_rnnt():
# RNN-T
from models.rnnt import RNNT
mdl = RNNT()
mdl.load_from_pretrained()
from extra.datasets.librispeech import iterate
from examples.mlperf.metrics import word_error_rate
LABELS = [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "'"]
c = 0
scores = 0
words = 0
st = time.perf_counter()
for X, Y in iterate():
mt = time.perf_counter()
tt = mdl.decode(Tensor(X[0]), Tensor([X[1]]))
et = time.perf_counter()
print(f"{(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model")
for n, t in enumerate(tt):
tnp = np.array(t)
_, scores_, words_ = word_error_rate(["".join([LABELS[int(tnp[i])] for i in range(tnp.shape[0])])], [Y[n]])
scores += scores_
words += words_
c += len(tt)
print(f"WER: {scores/words}, {words} words, raw scores: {scores}, c: {c}")
st = time.perf_counter()
def eval_bert():
# Bert-QA
from models.bert import BertForQuestionAnswering
mdl = BertForQuestionAnswering()
mdl.load_from_pretrained()
@TinyJit
def run(input_ids, input_mask, segment_ids):
return mdl(input_ids, input_mask, segment_ids).realize()
from extra.datasets.squad import iterate
from examples.mlperf.helpers import get_bert_qa_prediction
from examples.mlperf.metrics import f1_score
from transformers import BertTokenizer
tokenizer = BertTokenizer(str(Path(__file__).parents[2] / "weights/bert_vocab.txt"))
c = 0
f1 = 0.0
st = time.perf_counter()
for X, Y in iterate(tokenizer):
mt = time.perf_counter()
outs = []
for x in X:
outs.append(run(Tensor(x["input_ids"]), Tensor(x["input_mask"]), Tensor(x["segment_ids"])).numpy())
et = time.perf_counter()
print(f"{(mt-st)*1000:.2f} ms loading data, {(et-mt)*1000:.2f} ms to run model over {len(X)} features")
pred = get_bert_qa_prediction(X, Y, outs)
print(f"pred: {pred}\nans: {Y['answers']}")
f1 += max([f1_score(pred, ans) for ans in Y["answers"]])
c += 1
print(f"f1: {f1/c}, raw: {f1}, c: {c}\n")
st = time.perf_counter()
def eval_mrcnn():
from tqdm import tqdm
from models.mask_rcnn import MaskRCNN
from models.resnet import ResNet
from extra.datasets.coco import BASEDIR, images, convert_prediction_to_coco_bbox, convert_prediction_to_coco_mask, accumulate_predictions_for_coco, evaluate_predictions_on_coco, iterate
from examples.mask_rcnn import compute_prediction_batched, Image
mdl = MaskRCNN(ResNet(50, num_classes=None, stride_in_1x1=True))
mdl.load_from_pretrained()
bbox_output = '/tmp/results_bbox.json'
mask_output = '/tmp/results_mask.json'
accumulate_predictions_for_coco([], bbox_output, rm=True)
accumulate_predictions_for_coco([], mask_output, rm=True)
#TODO: bs > 1 not as accurate
bs = 1
for batch in tqdm(iterate(images, bs=bs), total=len(images)//bs):
batch_imgs = []
for image_row in batch:
image_name = image_row['file_name']
img = Image.open(BASEDIR/f'val2017/{image_name}').convert("RGB")
batch_imgs.append(img)
batch_result = compute_prediction_batched(batch_imgs, mdl)
for image_row, result in zip(batch, batch_result):
image_name = image_row['file_name']
box_pred = convert_prediction_to_coco_bbox(image_name, result)
mask_pred = convert_prediction_to_coco_mask(image_name, result)
accumulate_predictions_for_coco(box_pred, bbox_output)
accumulate_predictions_for_coco(mask_pred, mask_output)
del batch_imgs
del batch_result
evaluate_predictions_on_coco(bbox_output, iou_type='bbox')
evaluate_predictions_on_coco(mask_output, iou_type='segm')
if __name__ == "__main__":
# inference only
Tensor.training = False
Tensor.no_grad = True
models = getenv("MODEL", "resnet,retinanet,unet3d,rnnt,bert,mrcnn").split(",")
for m in models:
nm = f"eval_{m}"
if nm in globals():
print(f"eval {m}")
globals()[nm]()