tinygrad/examples/mlperf
Karan Handa a8aa13dc91
[ready] Replacing os with pathlib (#1708)
* replace os.path with pathlib

* safe convert dirnames to pathlib

* replace all os.path.join

* fix cuda error

* change main chunk

* Reviewer fixes

* fix vgg

* Fixed everything

* Final fixes

* ensure consistency

* Change all parent.parent... to parents
2023-08-30 10:41:08 -07:00
..
README start on mlperf models 2023-05-10 16:30:49 -07:00
helpers.py Add MLPerf UNet3D model (#775) 2023-05-28 20:38:19 -07:00
metrics.py Add MLPerf UNet3D model (#775) 2023-05-28 20:38:19 -07:00
model_eval.py [ready] Replacing os with pathlib (#1708) 2023-08-30 10:41:08 -07:00
model_spec.py MaskRCNN Inference (#884) 2023-06-25 15:37:51 -07:00
model_train.py feat: add train scaffolding (#859) 2023-05-30 07:10:40 -07:00

README

Each model should be a clean single file.
They are imported from the top level `models` directory

It should be capable of loading weights from the reference imp.

We will focus on these 5 models:

# Resnet50-v1.5 (classic) -- 8.2 GOPS/input
# Retinanet
# 3D UNET (upconvs)
# RNNT
# BERT-large (transformer)

They are used in both the training and inference benchmark:
https://mlcommons.org/en/training-normal-21/
https://mlcommons.org/en/inference-edge-30/
And we will submit to both.

NOTE: we are Edge since we don't have ECC RAM