mirror of https://github.com/commaai/tinygrad.git
395 lines
15 KiB
Python
395 lines
15 KiB
Python
import numpy as np
|
|
import torch
|
|
import unittest, copy
|
|
import mmap
|
|
from tinygrad.tensor import Tensor, Device
|
|
from tinygrad.helpers import dtypes
|
|
from extra.gradcheck import numerical_jacobian, jacobian, gradcheck
|
|
from extra.utils import temp
|
|
|
|
x_init = np.random.randn(1,3).astype(np.float32)
|
|
U_init = np.random.randn(3,3).astype(np.float32)
|
|
V_init = np.random.randn(3,3).astype(np.float32)
|
|
W_init = np.random.randn(3,3).astype(np.float32)
|
|
m_init = np.random.randn(1,3).astype(np.float32)
|
|
|
|
class TestTinygrad(unittest.TestCase):
|
|
def test_zerodim_initialization(self):
|
|
a = Tensor(55)
|
|
b = Tensor(3.14)
|
|
|
|
self.assertEqual(a.shape, ())
|
|
self.assertEqual(b.shape, ())
|
|
|
|
def test_plus_equals(self):
|
|
a = Tensor.randn(10,10)
|
|
b = Tensor.randn(10,10)
|
|
c = a + b
|
|
val1 = c.numpy()
|
|
a += b
|
|
val2 = a.numpy()
|
|
np.testing.assert_allclose(val1, val2)
|
|
|
|
def test_backward_pass(self):
|
|
def test_tinygrad():
|
|
x = Tensor(x_init, requires_grad=True)
|
|
W = Tensor(W_init, requires_grad=True)
|
|
m = Tensor(m_init)
|
|
out = x.dot(W).relu()
|
|
out = out.log_softmax()
|
|
out = out.mul(m).add(m).sum()
|
|
out.backward()
|
|
return out.numpy(), x.grad.numpy(), W.grad.numpy()
|
|
|
|
def test_pytorch():
|
|
x = torch.tensor(x_init, requires_grad=True)
|
|
W = torch.tensor(W_init, requires_grad=True)
|
|
m = torch.tensor(m_init)
|
|
out = x.matmul(W).relu()
|
|
out = torch.nn.functional.log_softmax(out, dim=1)
|
|
out = out.mul(m).add(m).sum()
|
|
out.backward()
|
|
return out.detach().numpy(), x.grad, W.grad
|
|
|
|
for x,y in zip(test_tinygrad(), test_pytorch()):
|
|
np.testing.assert_allclose(x, y, atol=1e-5)
|
|
|
|
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "this test uses more than 8 bufs which breaks webgpu") #TODO: remove after #1461
|
|
def test_backward_pass_diamond_model(self):
|
|
def test_tinygrad():
|
|
u = Tensor(U_init, requires_grad=True)
|
|
v = Tensor(V_init, requires_grad=True)
|
|
w = Tensor(W_init, requires_grad=True)
|
|
x = u.mul(v).relu()
|
|
y = u.mul(w).relu()
|
|
out = x.add(y).mul(y).relu()
|
|
out = out.log_softmax()
|
|
out = out.sum()
|
|
out.backward()
|
|
return out.numpy(), u.grad.numpy(), v.grad.numpy(), w.grad.numpy()
|
|
|
|
def test_pytorch():
|
|
u = torch.tensor(U_init, requires_grad=True)
|
|
v = torch.tensor(V_init, requires_grad=True)
|
|
w = torch.tensor(W_init, requires_grad=True)
|
|
x = u.mul(v).relu()
|
|
y = u.mul(w).relu()
|
|
out = x.add(y).mul(y).relu()
|
|
out = torch.nn.functional.log_softmax(out, dim=1)
|
|
out = out.sum()
|
|
out.backward()
|
|
return out.detach().numpy(), u.grad, v.grad, w.grad
|
|
|
|
for x,y in zip(test_tinygrad(), test_pytorch()):
|
|
np.testing.assert_allclose(x, y, atol=1e-5)
|
|
|
|
def test_nograd(self):
|
|
x = Tensor(x_init, requires_grad=False)
|
|
m = Tensor(m_init, requires_grad=False)
|
|
W = Tensor(W_init, requires_grad=True)
|
|
tmp = x.mul(m)
|
|
mm = tmp.matmul(W)
|
|
out = mm.relu()
|
|
out = out.sum()
|
|
out.backward()
|
|
assert x.grad is None
|
|
assert m.grad is None
|
|
assert tmp.grad is None
|
|
assert mm.grad is not None
|
|
assert W.grad is not None
|
|
|
|
def test_dropout(self):
|
|
with Tensor.train():
|
|
n, rate = 1_000_000, 0.1
|
|
w = Tensor.ones(n).dropout(rate)
|
|
non_zeros = np.count_nonzero(w.numpy())
|
|
expected = n * (1 - rate)
|
|
np.testing.assert_allclose(non_zeros, expected, rtol=2e-3)
|
|
|
|
def test_jacobian(self):
|
|
W = np.random.RandomState(42069).random((10, 5)).astype(np.float32)
|
|
x = np.random.RandomState(69420).random((1, 10)).astype(np.float32)
|
|
|
|
torch_x = torch.tensor(x, requires_grad=True)
|
|
torch_W = torch.tensor(W, requires_grad=True)
|
|
torch_func = lambda x: torch.nn.functional.log_softmax(x.matmul(torch_W).relu(), dim=1)
|
|
PJ = torch.autograd.functional.jacobian(torch_func, torch_x).squeeze().numpy()
|
|
|
|
tiny_x = Tensor(x, requires_grad=True)
|
|
tiny_W = Tensor(W, requires_grad=True)
|
|
tiny_func = lambda x: x.dot(tiny_W).relu().log_softmax()
|
|
J = jacobian(tiny_func, tiny_x)
|
|
NJ = numerical_jacobian(tiny_func, tiny_x)
|
|
|
|
np.testing.assert_allclose(PJ, J, atol = 1e-5)
|
|
np.testing.assert_allclose(PJ, NJ, atol = 1e-3)
|
|
|
|
def test_gradcheck(self):
|
|
W = np.random.RandomState(1337).random((10, 5)).astype(np.float32)
|
|
x = np.random.RandomState(7331).random((1, 10)).astype(np.float32)
|
|
|
|
tiny_x = Tensor(x, requires_grad=True)
|
|
tiny_W = Tensor(W, requires_grad=True)
|
|
tiny_func = lambda x: x.dot(tiny_W).relu().log_softmax()
|
|
|
|
self.assertTrue(gradcheck(tiny_func, tiny_x, eps = 1e-3))
|
|
|
|
# coarse approx. since a "big" eps and the non-linearities of the model
|
|
self.assertFalse(gradcheck(tiny_func, tiny_x, eps = 1e-5))
|
|
|
|
def test_random_fns_are_deterministic_with_seed(self):
|
|
for random_fn in [Tensor.randn, Tensor.normal, Tensor.uniform, Tensor.scaled_uniform, Tensor.glorot_uniform, Tensor.kaiming_normal]:
|
|
with self.subTest(msg=f"Tensor.{random_fn.__name__}"):
|
|
Tensor.manual_seed(1337)
|
|
a = random_fn(10,10).realize()
|
|
Tensor.manual_seed(1337)
|
|
b = random_fn(10,10).realize()
|
|
np.testing.assert_allclose(a.numpy(), b.numpy())
|
|
|
|
def test_randn_isnt_inf_on_zero(self):
|
|
# simulate failure case of rand handing a zero to randn
|
|
original_rand, Tensor.rand = Tensor.rand, Tensor.zeros
|
|
try: self.assertNotIn(np.inf, Tensor.randn(16).numpy())
|
|
except: raise
|
|
finally: Tensor.rand = original_rand
|
|
|
|
def test_zeros_like_has_same_dtype(self):
|
|
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
|
|
a = Tensor([1, 2, 3], dtype=datatype)
|
|
b = Tensor.zeros_like(a)
|
|
assert a.dtype == b.dtype, f"a.dtype and b.dtype should be {datatype}"
|
|
assert a.shape == b.shape, f"shape mismatch (Tensor.zeros_like){a.shape} != (torch){b.shape}"
|
|
|
|
a = Tensor([1, 2, 3])
|
|
b = Tensor.zeros_like(a, dtype=dtypes.int8)
|
|
assert a.dtype != b.dtype and a.dtype == dtypes.float32 and b.dtype == dtypes.int8, "a.dtype should be float and b.dtype should be char"
|
|
assert a.shape == b.shape, f"shape mismatch (Tensor.zeros_like){a.shape} != (torch){b.shape}"
|
|
|
|
def test_ones_like_has_same_dtype_and_shape(self):
|
|
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
|
|
a = Tensor([1, 2, 3], dtype=datatype)
|
|
b = Tensor.ones_like(a)
|
|
assert a.dtype == b.dtype, f"a.dtype and b.dtype should be {datatype}"
|
|
assert a.shape == b.shape, f"shape mismatch (Tensor.ones_like){a.shape} != (torch){b.shape}"
|
|
|
|
a = Tensor([1, 2, 3])
|
|
b = Tensor.ones_like(a, dtype=dtypes.int8)
|
|
assert a.dtype != b.dtype and a.dtype == dtypes.float32 and b.dtype == dtypes.int8, "a.dtype should be float and b.dtype should be char"
|
|
assert a.shape == b.shape, f"shape mismatch (Tensor.ones_like){a.shape} != (torch){b.shape}"
|
|
|
|
def test_ndim(self):
|
|
assert Tensor(1).ndim == 0
|
|
assert Tensor.randn(1).ndim == 1
|
|
assert Tensor.randn(2,2,2).ndim == 3
|
|
assert Tensor.randn(1,1,1,1,1,1).ndim == 6
|
|
|
|
def test_argfix(self):
|
|
self.assertEqual(Tensor.zeros().shape, ())
|
|
self.assertEqual(Tensor.ones().shape, ())
|
|
|
|
self.assertEqual(Tensor.zeros([]).shape, ())
|
|
self.assertEqual(Tensor.ones([]).shape, ())
|
|
|
|
self.assertEqual(Tensor.zeros(tuple()).shape, ())
|
|
self.assertEqual(Tensor.ones(tuple()).shape, ())
|
|
|
|
self.assertEqual(Tensor.zeros(1).shape, (1,))
|
|
self.assertEqual(Tensor.ones(1).shape, (1,))
|
|
|
|
self.assertEqual(Tensor.zeros(1,10,20).shape, (1,10,20))
|
|
self.assertEqual(Tensor.ones(1,10,20).shape, (1,10,20))
|
|
|
|
self.assertEqual(Tensor.zeros([1]).shape, (1,))
|
|
self.assertEqual(Tensor.ones([1]).shape, (1,))
|
|
|
|
self.assertEqual(Tensor.zeros([10,20,40]).shape, (10,20,40))
|
|
self.assertEqual(Tensor.ones([10,20,40]).shape, (10,20,40))
|
|
|
|
self.assertEqual(Tensor.rand(1,10,20).shape, (1,10,20))
|
|
self.assertEqual(Tensor.rand((10,20,40)).shape, (10,20,40))
|
|
|
|
self.assertEqual(Tensor.empty(1,10,20).shape, (1,10,20))
|
|
self.assertEqual(Tensor.empty((10,20,40)).shape, (10,20,40))
|
|
|
|
def test_numel(self):
|
|
assert Tensor.randn(10, 10).numel() == 100
|
|
assert Tensor.randn(1,2,5).numel() == 10
|
|
assert Tensor.randn(1,1,1,1,1,1).numel() == 1
|
|
assert Tensor([]).numel() == 0
|
|
assert Tensor.randn(1,0,2,5).numel() == 0
|
|
|
|
def test_element_size(self):
|
|
for _, dtype in dtypes.fields().items():
|
|
assert dtype.itemsize == Tensor.randn(3, dtype=dtype).element_size(), f"Tensor.element_size() not matching Tensor.dtype.itemsize for {dtype}"
|
|
|
|
def test_deepwalk_ctx_check(self):
|
|
layer = Tensor.uniform(1, 1, requires_grad=True)
|
|
x = Tensor.randn(1, 1, 1)
|
|
x.dot(layer).mean().backward()
|
|
x = Tensor.randn(1, 1, 1)
|
|
x.dot(layer).mean().backward()
|
|
|
|
def test_zerosized_tensors(self):
|
|
np.testing.assert_equal(Tensor([]).numpy(), np.array([]))
|
|
np.testing.assert_equal(Tensor(None).numpy(), np.array([]))
|
|
|
|
def test_tensor_ndarray_dtype(self):
|
|
arr = np.array([1]) # where dtype is implicitly int64
|
|
assert Tensor(arr).dtype == dtypes.int64
|
|
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32 # check if ndarray correctly casts to Tensor dtype
|
|
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64 # check that it works for something else
|
|
|
|
def test_tensor_list_dtype(self):
|
|
arr = [1]
|
|
assert Tensor(arr).dtype == Tensor.default_type
|
|
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32
|
|
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64
|
|
|
|
def test_tensor_copy(self):
|
|
x = copy.deepcopy(Tensor.ones((3,3,3)))
|
|
np.testing.assert_allclose(x.numpy(), np.ones((3,3,3)))
|
|
|
|
def test_copy_from_disk(self):
|
|
t = Tensor.randn(30, device="CPU").to(f"disk:{temp('test_copy_from_disk')}")
|
|
a = t[10:20]
|
|
dev = a.to(Device.DEFAULT)
|
|
np.testing.assert_allclose(a.numpy(), dev.numpy())
|
|
|
|
# Regression test for https://github.com/tinygrad/tinygrad/issues/1751
|
|
def test_copy_from_numpy_unaligned(self):
|
|
# 2**15 is the minimum for repro
|
|
arr = np.random.randn(2**15).astype(dtypes.float.np)
|
|
fn = temp('test_copy_from_numpy_unaligned')
|
|
with open(fn, 'wb') as f: f.write(b't' + arr.tobytes())
|
|
with open(fn, "a+b") as f: memview = memoryview(mmap.mmap(f.fileno(), arr.nbytes + 1))
|
|
ua_arr = np.frombuffer(memview[1:], dtype=arr.dtype, count=arr.shape[0])
|
|
np.testing.assert_allclose(arr, ua_arr)
|
|
assert not ua_arr.flags.aligned
|
|
# force device copy - to() is opt'd away - Tensor(dev)/1 is ignored
|
|
np.testing.assert_allclose(ua_arr, (Tensor(ua_arr)/Tensor(1)).numpy())
|
|
|
|
class TestZeroShapeTensor(unittest.TestCase):
|
|
def test_shape_stride(self):
|
|
t = Tensor.rand(3, 2, 0)
|
|
assert t.shape == (3, 2, 0)
|
|
# numpy has stride 0, 0, 0; torch has stride 2, 1, 1
|
|
assert t.lazydata.st.real_strides() == (0, 0, 1)
|
|
|
|
t = Tensor.rand(3, 0, 2)
|
|
assert t.shape == (3, 0, 2)
|
|
# numpy has stride 0, 0, 0; torch has stride 2, 2, 1
|
|
assert t.lazydata.st.real_strides() == (0, 2, 1)
|
|
|
|
t = Tensor.rand(0, 0, 0)
|
|
assert t.shape == (0, 0, 0)
|
|
# numpy has stride 0, 0, 0; torch has stride 1, 1, 1
|
|
assert t.lazydata.st.real_strides() == (0, 0, 1)
|
|
|
|
def test_rand(self):
|
|
t = Tensor.rand(3, 2, 0)
|
|
assert t.shape == (3, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
|
|
t = Tensor.rand(0)
|
|
assert t.shape == (0,)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((0,)))
|
|
t = Tensor.rand(0, 0, 0)
|
|
assert t.shape == (0, 0, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((0, 0, 0)))
|
|
|
|
def test_full(self):
|
|
t = Tensor.zeros(3, 2, 0)
|
|
assert t.shape == (3, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
|
|
t = Tensor.full((3, 2, 0), 12)
|
|
assert t.shape == (3, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.full((3, 2, 0), 12))
|
|
|
|
def test_reshape(self):
|
|
t = Tensor.zeros(3, 2, 0)
|
|
a = t.reshape(7, 0)
|
|
assert a.shape == (7, 0)
|
|
np.testing.assert_equal(a.numpy(), np.zeros((7, 0)))
|
|
with self.assertRaises(AssertionError):
|
|
# cannot reshape from size 0 to size 1
|
|
a = t.reshape(())
|
|
|
|
def test_expand(self):
|
|
t = Tensor.full((3, 2, 0), 12).expand((6, 2, 0))
|
|
assert t.shape == (6, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.full((6, 2, 0), 12))
|
|
|
|
def test_pad(self):
|
|
t = Tensor.rand(3, 2, 0).pad((None, None, (1, 1)), 1)
|
|
assert t.shape == (3, 2, 2)
|
|
np.testing.assert_equal(t.numpy(), np.ones((3, 2, 2)))
|
|
|
|
if Device.DEFAULT != "TORCH":
|
|
# torch does not support padding non-zero dim with 0-size. torch.nn.functional.pad(torch.zeros(3,2,0), [0,0,0,4,0,0])
|
|
t = Tensor.rand(3, 2, 0).pad((None, (1, 1), None), 1)
|
|
assert t.shape == (3, 4, 0)
|
|
np.testing.assert_equal(t.numpy(), np.ones((3, 4, 0)))
|
|
|
|
t = Tensor.rand(3, 2, 0).pad(((1, 1), None, None), 1)
|
|
assert t.shape == (5, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.ones((5, 2, 0)))
|
|
|
|
def test_shrink_into_zero(self):
|
|
t = Tensor.rand(3, 4).realize()
|
|
assert t.shrink((None, (2, 2))).realize().shape == (3, 0)
|
|
assert t.shrink(((2, 2), None)).realize().shape == (0, 4)
|
|
assert t.shrink(((2, 2), (2, 2))).realize().shape == (0, 0)
|
|
|
|
def test_cat(self):
|
|
s = Tensor.rand(3, 2, 2)
|
|
t = Tensor.rand(3, 2, 0).cat(s, dim=2)
|
|
assert t.shape == (3, 2, 2)
|
|
np.testing.assert_equal(t.numpy(), s.numpy())
|
|
|
|
if Device.DEFAULT != "TORCH":
|
|
# torch does not support padding non-zero dim with 0-size. torch.nn.functional.pad(torch.zeros(3,2,0), [0,0,0,4,0,0])
|
|
s = Tensor.rand(3, 4, 0)
|
|
t = Tensor.rand(3, 2, 0).cat(s, dim=1)
|
|
assert t.shape == (3, 6, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((3, 6, 0)))
|
|
|
|
def test_elementwise(self):
|
|
a = Tensor.rand(3, 2, 0)
|
|
a_exp = a.exp()
|
|
assert a_exp.shape == (3, 2, 0)
|
|
np.testing.assert_equal(a_exp.numpy(), np.exp(a.numpy()))
|
|
|
|
b = Tensor.rand(3, 2, 0)
|
|
assert b.shape == (3, 2, 0)
|
|
ab = a * b
|
|
assert ab.shape == (3, 2, 0)
|
|
np.testing.assert_equal(ab.numpy(), a.numpy() * b.numpy())
|
|
|
|
mask = (Tensor.rand(3, 2, 0) > 0.5)
|
|
assert mask.shape == (3, 2, 0)
|
|
c = mask.where(a, b)
|
|
assert c.shape == (3, 2, 0)
|
|
np.testing.assert_equal(c.numpy(), np.where(mask.numpy(), a.numpy(), b.numpy()))
|
|
|
|
def test_reduce_over_non_zero(self):
|
|
a = Tensor.ones(3, 2, 0).sum(axis=1)
|
|
assert a.shape == (3, 0)
|
|
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=1))
|
|
|
|
def test_reduce_over_zero(self):
|
|
a = Tensor.ones(3, 2, 0).sum(axis=2)
|
|
assert a.shape == (3, 2)
|
|
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=2))
|
|
|
|
a = Tensor.ones(3, 2, 0).sum(axis=2, keepdim=True)
|
|
assert a.shape == (3, 2, 1)
|
|
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=2, keepdims=True))
|
|
|
|
def test_reduce_default(self):
|
|
np.testing.assert_equal(Tensor([]).max().numpy(), -float("inf"))
|
|
np.testing.assert_equal(Tensor([]).min().numpy(), float("inf"))
|
|
np.testing.assert_equal(Tensor([]).sum().numpy(), 0)
|
|
np.testing.assert_equal(Tensor([]).mean().numpy(), 0)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|