mirror of https://github.com/commaai/tinygrad.git
84 lines
2.4 KiB
Python
84 lines
2.4 KiB
Python
import unittest
|
|
import time
|
|
import numpy as np
|
|
from tinygrad.nn.state import get_parameters
|
|
from tinygrad.nn import optim
|
|
from tinygrad.tensor import Device
|
|
from tinygrad.helpers import getenv
|
|
from extra.training import train
|
|
from extra.models.convnext import ConvNeXt
|
|
from extra.models.efficientnet import EfficientNet
|
|
from extra.models.transformer import Transformer
|
|
from extra.models.vit import ViT
|
|
from extra.models.resnet import ResNet18
|
|
import pytest
|
|
|
|
pytestmark = [pytest.mark.exclude_gpu, pytest.mark.exclude_clang]
|
|
|
|
BS = getenv("BS", 2)
|
|
|
|
def train_one_step(model,X,Y):
|
|
params = get_parameters(model)
|
|
pcount = 0
|
|
for p in params:
|
|
pcount += np.prod(p.shape)
|
|
optimizer = optim.SGD(params, lr=0.001)
|
|
print("stepping %r with %.1fM params bs %d" % (type(model), pcount/1e6, BS))
|
|
st = time.time()
|
|
train(model, X, Y, optimizer, steps=1, BS=BS)
|
|
et = time.time()-st
|
|
print("done in %.2f ms" % (et*1000.))
|
|
|
|
def check_gc():
|
|
if Device.DEFAULT == "GPU":
|
|
from extra.introspection import print_objects
|
|
assert print_objects() == 0
|
|
|
|
class TestTrain(unittest.TestCase):
|
|
def test_convnext(self):
|
|
model = ConvNeXt(depths=[1], dims=[16])
|
|
X = np.zeros((BS,3,224,224), dtype=np.float32)
|
|
Y = np.zeros((BS), dtype=np.int32)
|
|
train_one_step(model,X,Y)
|
|
check_gc()
|
|
|
|
def test_efficientnet(self):
|
|
model = EfficientNet(0)
|
|
X = np.zeros((BS,3,224,224), dtype=np.float32)
|
|
Y = np.zeros((BS), dtype=np.int32)
|
|
train_one_step(model,X,Y)
|
|
check_gc()
|
|
|
|
@unittest.skipIf(Device.DEFAULT in ["METAL", "WEBGPU"], "too many buffers for webgpu and metal")
|
|
def test_vit(self):
|
|
model = ViT()
|
|
X = np.zeros((BS,3,224,224), dtype=np.float32)
|
|
Y = np.zeros((BS,), dtype=np.int32)
|
|
train_one_step(model,X,Y)
|
|
check_gc()
|
|
|
|
def test_transformer(self):
|
|
# this should be small GPT-2, but the param count is wrong
|
|
# (real ff_dim is 768*4)
|
|
model = Transformer(syms=10, maxlen=6, layers=12, embed_dim=768, num_heads=12, ff_dim=768//4)
|
|
X = np.zeros((BS,6), dtype=np.float32)
|
|
Y = np.zeros((BS,6), dtype=np.int32)
|
|
train_one_step(model,X,Y)
|
|
check_gc()
|
|
|
|
def test_resnet(self):
|
|
X = np.zeros((BS, 3, 224, 224), dtype=np.float32)
|
|
Y = np.zeros((BS), dtype=np.int32)
|
|
for resnet_v in [ResNet18]:
|
|
model = resnet_v()
|
|
model.load_from_pretrained()
|
|
train_one_step(model, X, Y)
|
|
check_gc()
|
|
|
|
def test_bert(self):
|
|
# TODO: write this
|
|
pass
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|