tinygrad/test/test_symbolic_shapetracker.py

228 lines
9.6 KiB
Python

import unittest
from tinygrad.shape.shapetracker import ShapeTracker, View
from tinygrad.shape.symbolic import Variable, NumNode
from tinygrad.tensor import Tensor
class TestSymbolic(unittest.TestCase):
def assert_tuple_equal(self, x, y):
for a,b in zip(x,y): self.assertFalse(a != b)
def test_symbolic_st(self):
x = Variable("x", 1, 100)
st = ShapeTracker.from_shape((x, 3))
assert st.shape == (x, 3)
assert st.real_strides() == (3, 1)
@unittest.expectedFailure
def test_real_strides_0(self):
st = ShapeTracker(views=(View(shape=(2, (NumNode(1)+Variable('start_pos', 1, 8)), 1, 1), strides=(8, 1, 0, 0), offset=0, mask=((0, 2), (0, Variable('start_pos', 1, 8)), (0, 1), (0, 1)), contiguous=False), View(shape=(2, (NumNode(1)+Variable('start_pos', 1, 8))), strides=((NumNode(1)+Variable('start_pos', 1, 8)), 1), offset=0, mask=None, contiguous=True))) # noqa: E501
self.assertEqual(st.real_strides(), (8, None))
@unittest.expectedFailure
def test_real_strides_1(self):
st = ShapeTracker(views=(View(shape=(3, (NumNode(2)+Variable('i', 1, 10))), strides=(Variable('i', 1, 10), 1), offset=NumNode(0), mask=((0, 3), (0, Variable('i', 1, 10))), contiguous=False),)) # noqa: E501
self.assertEqual(st.real_strides(), (Variable('i', 1, 10), None))
@unittest.expectedFailure
def test_real_strides_2(self):
st = ShapeTracker(views=(View(shape=(3, (Variable('i', 1, 10)+Variable('j', 1, 10))), strides=(Variable('i', 1, 10), 1), offset=NumNode(0), mask=((0, 3), (0, Variable('i', 1, 10))), contiguous=False),)) # noqa: E501
self.assertEqual(st.real_strides(), (Variable('i', 1, 10), None))
def test_cat_dim0_strides(self):
i = Variable("i", 1, 5).bind(3)
j = Variable("j", 1, 5).bind(3)
k = Variable("k", 1, 5).bind(3)
t = Tensor.rand(3, 4).reshape(i, 4).cat(Tensor.rand(3, 4).reshape(j, 4), dim=0).cat(Tensor.rand(3, 4).reshape(k, 4), dim=0)
st = t.lazydata.st
self.assert_tuple_equal(st.shape, (i+j+k, 4))
assert st.real_strides() == (4, 1)
t = Tensor.rand(3, 3).reshape(i, 3).cat(Tensor.rand(3, 3).reshape(i, 3), dim=0).cat(Tensor.rand(3, 3), dim=0)
st = t.lazydata.st
self.assert_tuple_equal(st.shape, (2*i+3, 3))
assert st.real_strides() == (3, 1)
def test_cat_dim1_strides(self):
i = Variable("i", 1, 5).bind(4)
j = Variable("j", 1, 5).bind(4)
k = Variable("k", 1, 5).bind(4)
t = Tensor.rand(3, 4).reshape(3, i).cat(Tensor.rand(3, 4).reshape(3, j), dim=1).cat(Tensor.rand(3, 4).reshape(3, k), dim=1)
st = t.lazydata.st
self.assert_tuple_equal(st.shape, (3, i+j+k))
self.assert_tuple_equal(st.real_strides(), (i+j+k, 1))
class TestSymbolicVarVals(unittest.TestCase):
def assert_equal(self, x, y): self.assertFalse(x != y)
def test_var_vals_empty(self):
assert ShapeTracker.from_shape((3, 4, 5)).var_vals == {}
def test_var_vals_shape(self):
x = Variable("x", 1, 100).bind(3)
assert ShapeTracker.from_shape((x, 3)).var_vals == {Variable("x", 1, 100): 3}
def test_var_vals_offset(self):
x = Variable("x", 1, 100).bind(3)
st = ShapeTracker.from_shape((4, 3)).shrink(((x, x+1), (0, 3)))
self.assert_equal(st.views[-1].offset, x * 3)
assert st.var_vals == {Variable("x", 1, 100): 3}
def test_var_vals_mask(self):
x = Variable("x", 1, 100).bind(3)
view = View.create(shape=(3,4), strides=(4,1), offset=0, mask=((0, x), (0, 4)))
st = ShapeTracker(views=(view,))
assert st.var_vals == {Variable("x", 1, 100): 3}
def test_var_vals_complex(self):
x = Variable("x", 1, 100).bind(3)
y = Variable("y", 1, 100).bind(4)
z = Variable("z", 1, 100).bind(5)
st = ShapeTracker.from_shape((x, 5, y)).shrink(((0, x), (z, z+1), (0, 3)))
self.assert_equal(st.views[-1].offset, y * z)
assert st.var_vals == {Variable("x", 1, 100): 3, Variable("y", 1, 100):4, Variable("z", 1, 100): 5}
def test_shrink_reshape(self):
x = Variable("x", 1, 100).bind(3)
st = ShapeTracker.from_shape((10, 10, 10)).shrink(((x, x+3), (3, 7), (2, 5)))
st = st.reshape((3*4*3,))
assert st.var_vals == {Variable("x", 1, 100): 3}
class TestShapeTrackerUnbind(unittest.TestCase):
def test_view_unbind(self):
v = Variable("v", 1, 100)
bv = Variable("v", 1, 100).bind(3)
unbound_view, var_val = View.create(shape=(bv, 4)).unbind()
assert unbound_view == View.create(shape=(v, 4))
assert var_val == {v: 3}
def test_reshape_unbind(self):
v = Variable("v", 1, 100)
bv = Variable("v", 1, 100).bind(3)
t = Tensor.rand(3, 4).reshape(bv, 4)
unbound_st, var_val = t.lazydata.st.unbind()
assert unbound_st == ShapeTracker((View.create(shape=(v, 4)),))
assert var_val == {v: 3}
def test_shrink_unbind(self):
v = Variable("v", 1, 100)
bv = Variable("v", 1, 100).bind(2)
t = Tensor.rand(3, 4).shrink(((bv, bv+1), (0, 4)))
unbound_st, var_val = t.lazydata.st.unbind()
assert unbound_st == ShapeTracker((View.create(shape=(1, 4), offset=4*v),))
assert var_val == {v: 2}
class TestSymbolicReshapeFromContiguous(unittest.TestCase):
def test_reshape_into_symbols_simple(self):
for i in range(1, 6):
vi = Variable("i", 1, 5).bind(i)
t = Tensor.rand(i, 4).reshape(vi, 4)
assert t.shape == (vi, 4)
t = Tensor.rand(i, 6).reshape(vi, 2, 3)
assert t.shape == (vi, 2, 3)
def test_reshape_symbols_reshape_ints(self):
for i in range(1, 6):
vi = Variable("i", 1, 5).bind(i)
t = Tensor.rand(i, 4).reshape(vi, 4)
assert t.shape == (vi, 4)
t = t.reshape(i, 4)
assert t.shape == (i, 4)
@unittest.skip("works now")
def test_reshape_into_symbols_bad_shape(self):
vi = Variable("i", 1, 10).bind(4)
# TODO: this never actually worked, it relied on lazy
#with self.assertRaises(ValueError):
# Tensor.rand(4, 6).reshape(vi, 6).reshape(1, 77) # reshape to a different size new shape through symbolic shape
with self.assertRaises(AssertionError):
Tensor.rand(3, 4).reshape(3, (vi+1)) # reshape into non-Variable Node
def test_two_symbol_reshape(self):
for i in range(1, 6):
for j in range(1, 6):
vi = Variable("i", 1, 5).bind(i)
vj = Variable("j", 1, 5).bind(j)
t = Tensor.rand(i, j).reshape(vi, vj)
assert t.shape == (vi, vj)
# NOTE: this is currently not allowed
# t = t.reshape(1, vi*vj)
# assert t.shape == (1, vi*vj)
t = t.reshape(vj, vi)
assert t.shape == (vj, vi)
def test_symbolic_mask(self):
# taken from gpt2 single kvcache
# these two caused problems in gpt2 if reshape merged views
view = View(shape=(1, (NumNode(1)+Variable('start_pos', 1, 128).bind(2)), 16, 64), strides=(0, 0, 64, 1), offset=NumNode(1024), mask=((0, 1), (Variable('start_pos', 1, 128).bind(2), (NumNode(1)+Variable('start_pos', 1, 128).bind(2))), (0, 16), (0, 64)), contiguous=False) # noqa: E501
new_shape = (1, 1, (NumNode(1)+Variable('start_pos', 1, 128).bind(2)), 16, 64)
assert view.reshape(new_shape) is None
view = View(shape=(2, 1, (NumNode(1)+Variable('start_pos', 1, 128)), 16, 64), strides=(0, 0, 1024, 64, 1), offset=131072, mask=((1, 2), (0, 1), (0, (NumNode(1)+Variable('start_pos', 1, 128))), (0, 16), (0, 64)), contiguous=False) # noqa: E501
new_shape = (2, (NumNode(1)+Variable('start_pos', 1, 128)), 16, 64)
assert view.reshape(new_shape) is None
class TestSymbolicReshapeFromNonContiguous(unittest.TestCase):
def test_reshape_from_const(self):
vi = Variable("i", 1, 5).bind(4)
t = Tensor.ones(3, 4).reshape(3, vi)
assert t.shape == (3, vi)
assert not t.lazydata.st.contiguous
assert len(t.lazydata.st.views) == 1
def test_reshape_not_allowed(self):
vi = Variable("i", 1, 5).bind(4)
with self.assertRaises(ValueError):
# different shape length # TODO: cases where contractions matched might be fine
Tensor.ones(3, 4, 1).reshape(3, vi)
with self.assertRaises(ValueError):
# size matched, but dimensions do not match
Tensor.ones(4, 3).reshape(3, vi)
def test_reshape_from_padded(self):
vi = Variable("i", 1, 5).bind(4)
t = Tensor.ones(3, 4).contiguous().expand(2, 3, 4).pad(((1, 1), None, None)).shrink((None, None, (1, 3)))
st = t.lazydata.st
assert len(st.views) == 1
view = st.views[0]
assert view.shape == (4, 3, 2)
t = t.reshape(vi, 3, 2)
st2 = t.lazydata.st
assert len(st2.views) == 1
view2 = st2.views[0]
# check only shape changed. strides, offset, mask, contiguous remained the same
assert view2.shape == (vi, 3, 2)
assert view.strides == view2.strides == (0, 4, 1)
assert view.offset == view2.offset == 1
assert view.mask == view2.mask == ((1, 3), (0, 3), (0, 2))
assert not view.contiguous and not view2.contiguous
class TestSymbolicExpand(unittest.TestCase):
def test_expand_into_symbols(self):
vi = Variable("i", 1, 5).bind(3)
vj = Variable("j", 1, 5).bind(3)
a = Tensor([[1], [2], [3]]).expand((3, vi))
assert a.shape == (3, vi)
a = a.reshape(3, vi, 1).expand((3, vi, vj))
assert a.shape == (3, vi, vj)
def test_plus_expands_constant(self):
for i in range(1, 6):
vi = Variable("i", 1, 5).bind(i)
a = Tensor.rand(3, i).reshape(3, vi)
a = a + 1
assert a.shape == (3, vi)
class TestSymbolicShrink(unittest.TestCase):
def test_shrink_symbols(self):
vi = Variable("i", 1, 5)
t = Tensor.rand(3, 5).shrink(((0, 2), (vi, vi+1)))
assert t.shape == (2, 1)
class TestSymbolicPad(unittest.TestCase):
def test_pad(self):
v = Variable("v", 1, 100).bind(5)
t = Tensor.ones(5).reshape(v).pad(((4, 0),)).reshape(9)
assert t.shape == (9,)
st = t.lazydata.st
print(st)
if __name__ == '__main__':
unittest.main()