mirror of https://github.com/commaai/tinygrad.git
72 lines
3.1 KiB
Python
72 lines
3.1 KiB
Python
import unittest
|
|
from tinygrad import Tensor, Device, dtypes
|
|
from tinygrad.tensor import _to_np_dtype
|
|
from tinygrad.helpers import Context, getenv
|
|
from test.test_schedule import check_schedule
|
|
from test.test_dtype_alu import ht
|
|
from test.helpers import is_dtype_supported
|
|
import numpy as np
|
|
from hypothesis import given, settings, strategies as strat
|
|
|
|
settings.register_profile("my_profile", max_examples=200, deadline=None, derandomize=getenv("DERANDOMIZE_CI", False))
|
|
settings.load_profile("my_profile")
|
|
|
|
class TestTranscendentalMath(unittest.TestCase):
|
|
@unittest.skipUnless(is_dtype_supported(dtypes.float64, Device.DEFAULT), f"no float64 on {Device.DEFAULT}")
|
|
@unittest.skipIf(getenv("CUDACPU") or (getenv("MOCKGPU") and Device.DEFAULT == "NV"), "crashed")
|
|
@given(ht.float64, strat.sampled_from([(Tensor.exp, np.exp), (Tensor.log, np.log), (Tensor.sin, np.sin)]))
|
|
def test_float64(self, x, op):
|
|
if op[0] == Tensor.sin:
|
|
# TODO: reduction does not work # 536870912.125 # 2914593.01171875 # 134217728.03125
|
|
if abs(x) > 536870912: return
|
|
|
|
with Context(TRANSCENDENTAL=2):
|
|
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float64)).numpy(),
|
|
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float64))),
|
|
atol=3e-2, rtol=1e-5) # sin can have bigger atol for very big x
|
|
|
|
@unittest.skipIf(getenv("CUDACPU") or (getenv("MOCKGPU") and Device.DEFAULT == "NV"), "crashed")
|
|
@given(ht.float32, strat.sampled_from([(Tensor.exp, np.exp), (Tensor.log, np.log), (Tensor.sin, np.sin)]))
|
|
def test_float32(self, x, op):
|
|
with Context(TRANSCENDENTAL=2):
|
|
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float32)).numpy(),
|
|
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float32))),
|
|
atol=2e-5, rtol=1e-5)
|
|
|
|
@unittest.skipUnless(is_dtype_supported(dtypes.float16, Device.DEFAULT), f"no float16 on {Device.DEFAULT}")
|
|
@given(ht.float16, strat.sampled_from([(Tensor.exp, np.exp), (Tensor.log, np.log), (Tensor.sin, np.sin)]))
|
|
def test_float16(self, x, op):
|
|
with Context(TRANSCENDENTAL=2):
|
|
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float16)).numpy(),
|
|
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float16))),
|
|
atol=1e-2, rtol=4e-3) # exp can have bigger rtol
|
|
|
|
class TestTranscendentalSchedule(unittest.TestCase):
|
|
# w/ payne_hanek_reduction (fp32)
|
|
def test_transcendental_sin_fusion(self):
|
|
with Context(TRANSCENDENTAL=2):
|
|
a = Tensor.empty(10)
|
|
b = Tensor.empty(10)
|
|
c = a.sin() + b.sin()
|
|
c = c.sin()
|
|
check_schedule(c, 1)
|
|
|
|
def test_transcendental_log2_fusion(self):
|
|
with Context(TRANSCENDENTAL=2):
|
|
a = Tensor.empty(10)
|
|
b = Tensor.empty(10)
|
|
c = a.log2() + b.log2()
|
|
c = c.log2()
|
|
check_schedule(c, 1)
|
|
|
|
def test_transcendental_exp2_fusion(self):
|
|
with Context(TRANSCENDENTAL=2):
|
|
a = Tensor.empty(10)
|
|
b = Tensor.empty(10)
|
|
c = a.exp2() + b.exp2()
|
|
c = c.exp2()
|
|
check_schedule(c, 1)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|