tinygrad/extra/gemm/simple_matvec.py

31 lines
1.1 KiB
Python

import numpy as np
from tinygrad.helpers import getenv
from tinygrad import dtypes, Tensor, Device
dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float
acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None
GPUS = getenv("GPUS", 0)
M = getenv("M", 16384)
N = getenv("N", 4096)
CNT = getenv("CNT", 10)
ATOL = getenv("ATOL", 1e-4)
RTOL = getenv("RTOL", 3e-2)
def _rand(device):
a, b = Tensor.rand(M, N, dtype=dtype_in).realize(), Tensor.rand(N, dtype=dtype_in).realize()
if isinstance(device, tuple):
a.shard_(device, axis=1)
b.shard_(device, axis=0)
return a, b
if __name__ == "__main__":
device = tuple(f"{Device.DEFAULT}:{i}" for i in range(GPUS)) if GPUS > 1 else Device.DEFAULT
a, b = _rand(device)
for i in range(CNT):
if i > 0 and getenv("RAND", 0) != 0:
a, b = _rand(device)
c = a.matmul(b, acc_dtype=acc_dtype).realize()
nc = c.numpy()
comp = a.numpy().astype(np.float32) @ b.numpy().astype(np.float32)
np.testing.assert_allclose(nc, comp, atol=ATOL, rtol=RTOL)