mirror of https://github.com/commaai/tinygrad.git
515 lines
22 KiB
Python
Executable File
515 lines
22 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# pip3 install sentencepiece tiktoken blobfile
|
|
#import typeguard.importhook
|
|
#typeguard.importhook.install_import_hook('tinygrad')
|
|
|
|
from pathlib import Path
|
|
from typing import List, Optional
|
|
import argparse, json
|
|
import numpy as np
|
|
np.set_printoptions(linewidth=200)
|
|
from tinygrad import Tensor, Device, GlobalCounters, nn
|
|
from tinygrad.helpers import Context, Timing, Profiling, DEBUG, JIT, getenv, colored
|
|
from tinygrad.nn.state import safe_load, torch_load, load_state_dict, get_parameters
|
|
from extra.models.llama import Transformer, convert_from_huggingface, fix_bf16
|
|
from sentencepiece import SentencePieceProcessor
|
|
import tiktoken, sys
|
|
from tiktoken.load import load_tiktoken_bpe
|
|
|
|
MAX_CONTEXT = getenv("MAX_CONTEXT", 4096)
|
|
|
|
class TikToken:
|
|
num_reserved_special_tokens: int = 256
|
|
pat_str: str = r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+" # noqa: E501
|
|
|
|
def __init__(self, model_file):
|
|
mergeable_ranks = load_tiktoken_bpe(model_file)
|
|
self.num_base_tokens = len(mergeable_ranks)
|
|
|
|
special_tokens = [
|
|
"<|begin_of_text|>",
|
|
"<|end_of_text|>",
|
|
"<|reserved_special_token_0|>",
|
|
"<|reserved_special_token_1|>",
|
|
"<|reserved_special_token_2|>",
|
|
"<|reserved_special_token_3|>",
|
|
"<|start_header_id|>",
|
|
"<|end_header_id|>",
|
|
"<|reserved_special_token_4|>",
|
|
"<|eot_id|>", # end of turn
|
|
] + [
|
|
f"<|reserved_special_token_{i}|>"
|
|
for i in range(5, self.num_reserved_special_tokens - 5)
|
|
]
|
|
self.special_tokens = {
|
|
token: self.num_base_tokens + i for i, token in enumerate(special_tokens)
|
|
}
|
|
|
|
self.model = tiktoken.Encoding(
|
|
name=model_file,
|
|
pat_str=self.pat_str,
|
|
mergeable_ranks=mergeable_ranks,
|
|
special_tokens=self.special_tokens,
|
|
)
|
|
|
|
def decode(self, toks): return self.model.decode([t for t in toks if t < self.num_base_tokens])
|
|
def encode(self, s): return self.model.encode(s)
|
|
|
|
def bos_id(self): return self.special_tokens["<|begin_of_text|>"]
|
|
def eos_id(self): return self.special_tokens["<|end_of_text|>"]
|
|
def vocab_size(self): return self.model.n_vocab
|
|
|
|
# calculating params:
|
|
# traditionally, the MLP in the transformer architecture has hidden_dim = dim*4 [arxiv/1706.03762, 3.3]
|
|
# however, Llama uses SwiGLU. in order to preserve param count to original transformer arch, hidden_dim must be = 2/3 * (dim*4) [arxiv/2002.05202]
|
|
# for models using MQA (n_kv_heads != n_heads), preserving param count means hidden dim must be further multiplied by 1.3 [arxiv/2307.09288, A.2.1]
|
|
MODEL_PARAMS = {
|
|
"1": {
|
|
"7B": {
|
|
"args": {"dim": 4096, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 11008},
|
|
"files": 1,
|
|
},
|
|
"13B": {
|
|
"args": {"dim": 5120, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 13824},
|
|
"files": 2,
|
|
},
|
|
"30B": {
|
|
"args": {"dim": 6656, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 17920},
|
|
"files": 4,
|
|
},
|
|
"65B": {
|
|
"args": {"dim": 8192, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 22016},
|
|
"files": 8,
|
|
},
|
|
"tokenizer": SentencePieceProcessor,
|
|
},
|
|
"2": {
|
|
"7B": {
|
|
"args": {"dim": 4096, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 11008},
|
|
"files": 1,
|
|
},
|
|
"13B": {
|
|
"args": {"dim": 5120, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 13824},
|
|
"files": 2,
|
|
},
|
|
"70B": {
|
|
"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 28672},
|
|
"files": 8,
|
|
},
|
|
"tokenizer": SentencePieceProcessor,
|
|
},
|
|
"3": {
|
|
"8B": {
|
|
"args": {"dim": 4096, "n_heads": 32, "n_kv_heads": 8, "n_layers": 32, "norm_eps": 1e-05, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 14336},
|
|
"files": 1,
|
|
},
|
|
"8B-Chat": {
|
|
"args": {"dim": 4096, "n_heads": 32, "n_kv_heads": 8, "n_layers": 32, "norm_eps": 1e-05, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 14336},
|
|
"files": 1,
|
|
},
|
|
"70B": {
|
|
"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 28672},
|
|
"files": 8,
|
|
},
|
|
"70B-Chat": {
|
|
"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 28672},
|
|
"files": 8,
|
|
},
|
|
"tokenizer": TikToken,
|
|
},
|
|
"code": {
|
|
"7B": {
|
|
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 11008},
|
|
"files": 1,
|
|
},
|
|
"7B-Python": {
|
|
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 11008},
|
|
"files": 1,
|
|
},
|
|
"7B-Instruct": {
|
|
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 11008},
|
|
"files": 1,
|
|
},
|
|
"13B": {
|
|
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 13824},
|
|
"files": 2,
|
|
},
|
|
"13B-Python": {
|
|
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 13824},
|
|
"files": 2,
|
|
},
|
|
"13B-Instruct": {
|
|
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 13824},
|
|
"files": 2,
|
|
},
|
|
"34B": {
|
|
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
|
|
"files": 4,
|
|
},
|
|
"34B-Python": {
|
|
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
|
|
"files": 4,
|
|
},
|
|
"34B-Instruct": {
|
|
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
|
|
"files": 4,
|
|
},
|
|
"tokenizer": SentencePieceProcessor,
|
|
},
|
|
"tiny": {
|
|
"1B": {
|
|
"args": {"dim": 2048, "n_layers": 22, "n_heads": 32, "n_kv_heads": 4, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 5632},
|
|
"files": 1,
|
|
},
|
|
"1B-Chat": {
|
|
"args": {"dim": 2048, "n_layers": 22, "n_heads": 32, "n_kv_heads": 4, "norm_eps": 1e-05, "vocab_size": 32003, "hidden_dim": 5632},
|
|
"files": 1,
|
|
},
|
|
"tokenizer": SentencePieceProcessor,
|
|
}
|
|
}
|
|
|
|
# **** helper functions ****
|
|
def concat_weights(models, device=None):
|
|
def convert(name) -> Tensor:
|
|
disk_tensors: List[Tensor] = [model[name] for model in models]
|
|
if len(disk_tensors) == 1 or len(disk_tensors[0].shape) == 1:
|
|
return disk_tensors[0].to(device=device)
|
|
axis = 1 if name.startswith("tok_embeddings.") or name.endswith(".attention.wo.weight") or name.endswith(".feed_forward.w2.weight") else 0
|
|
lazy_tensors = [data.to(device=device) for data in disk_tensors]
|
|
return lazy_tensors[0].cat(*lazy_tensors[1:], dim=axis)
|
|
return {name: convert(name) for name in {name: None for model in models for name in model}}
|
|
|
|
def load(fn:str):
|
|
if fn.endswith('.index.json'):
|
|
with open(fn) as fp: weight_map = json.load(fp)['weight_map']
|
|
parts = {n: load(str(Path(fn).parent / Path(n).name)) for n in set(weight_map.values())}
|
|
return {k: parts[n][k] for k, n in weight_map.items()}
|
|
elif fn.endswith(".safetensors"):
|
|
return safe_load(fn)
|
|
else:
|
|
return torch_load(fn)
|
|
|
|
class LLaMa:
|
|
@staticmethod
|
|
def build(model_path, tokenizer_path, model_gen="1", model_size="7B", quantize=None, device=None):
|
|
params = MODEL_PARAMS[model_gen][model_size]
|
|
tokenizer = MODEL_PARAMS[model_gen]['tokenizer'](model_file=str(tokenizer_path))
|
|
assert tokenizer.vocab_size() == params["args"]["vocab_size"], f"{tokenizer.vocab_size()=} not equal to {params['args']['vocab_size']}"
|
|
|
|
if quantize == "int8":
|
|
from llama3 import Int8Linear
|
|
linear = Int8Linear
|
|
elif quantize == "nf4":
|
|
from llama3 import NF4Linear
|
|
linear = NF4Linear(64)
|
|
else:
|
|
linear = nn.Linear
|
|
|
|
model = Transformer(**params["args"], linear=linear, max_context=MAX_CONTEXT, jit=bool(JIT))
|
|
|
|
if model_path.is_dir():
|
|
weights = concat_weights([load(filename) for filename in [f"{model_path}/consolidated.{i:02d}.pth" for i in range(params["files"])]], device[0] if isinstance(device, tuple) else device)
|
|
else:
|
|
weights = load(str(model_path))
|
|
if "model.embed_tokens.weight" in weights:
|
|
weights = convert_from_huggingface(weights, model, params["args"]["n_heads"], params["args"].get("n_kv_heads", params["args"]["n_heads"]))
|
|
|
|
weights = fix_bf16(weights)
|
|
|
|
with Context(BEAM=0):
|
|
# quantize
|
|
if quantize is not None:
|
|
weights = linear.quantize(weights, device)
|
|
for _,v in weights.items(): v.realize()
|
|
|
|
# shard
|
|
if isinstance(device, tuple):
|
|
for k,v in nn.state.get_state_dict(model).items():
|
|
if 'scale' in k: v.shard_(device, axis=None) # from quantized
|
|
elif '.attention.' in k:
|
|
if getenv("SHARD_KVCACHE") and ('.wq.' in k or '.wk.' in k or '.wv.' in k): v.shard_(device, axis=0)
|
|
else: v.shard_(device, axis=-1)
|
|
elif '.feed_forward.w1.' in k: v.shard_(device, axis=0)
|
|
elif '.feed_forward.w3.' in k: v.shard_(device, axis=0)
|
|
elif '.feed_forward.' in k: v.shard_(device, axis=-1)
|
|
elif 'tok_embeddings.weight' in k: v.shard_(device, axis=0)
|
|
elif 'output.weight' in k: v.shard_(device, axis=-1)
|
|
#elif k.endswith('.weight'): v.shard_(device, axis=-1)
|
|
#elif 'norm.' in k: v.shard_(device, axis=-1)
|
|
else: v.shard_(device, axis=None)
|
|
#print(k, v.shape, v.lazydata.axis)
|
|
|
|
# replace weights in model
|
|
load_state_dict(model, weights, strict=False, consume=True)
|
|
|
|
return LLaMa(model, tokenizer)
|
|
|
|
def __init__(self, model, tokenizer):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
def greedy_until(self, prompt:str, until, max_length, temperature):
|
|
toks = [self.tokenizer.bos_id()] + self.tokenizer.encode(prompt)
|
|
start_pos = 0
|
|
for i in range(max_length):
|
|
probs = llama.model(Tensor([toks[start_pos:]]), start_pos, temperature).realize()
|
|
probs_np = probs.numpy()
|
|
tok = int(np.random.choice(len(probs_np), p=probs_np))
|
|
start_pos = len(toks)
|
|
toks.append(tok)
|
|
|
|
if tok == self.tokenizer.eos_id(): break
|
|
output = self.tokenizer.decode(toks)
|
|
for s in until:
|
|
if output.endswith(s): return output[0:-len(s)]
|
|
return output
|
|
|
|
# **** main code ****
|
|
r"""
|
|
test:
|
|
python3 examples/llama.py --temperature=0 --count=50 --prompt="Hello."
|
|
output:
|
|
Hello. I'm a 20 year old male. I'm a student at the University of Texas at Austin. I'm a sophomore majoring in Computer Science.
|
|
|
|
test:
|
|
python3 examples/llama.py --gen='2' --temperature=0 --count=50 --prompt="Hello."
|
|
output:
|
|
Hello. I'm a 20 year old girl who is looking for a good lay in Palm Coast. I don't care whether it's at your place or not, as long as it's clean.
|
|
|
|
test:
|
|
python3 examples/llama.py --gen="code" --temperature=0.2 --count=50 --prompt="\
|
|
import argparse
|
|
|
|
def main(string: str):
|
|
print(string)
|
|
print(string[::-1])
|
|
|
|
if __name__ == "__main__":"
|
|
output:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('string', type=str, help='string to be reversed')
|
|
args = parser.parse_args()
|
|
main(args.string)
|
|
|
|
test:
|
|
python3 examples/llama.py --gen="code" --size="7B-Python" --temperature=0.2 --count=70 --prompt="def add_elements(arr,k):"
|
|
output:
|
|
for i in range(len(arr)):
|
|
arr[i] += k
|
|
return arr
|
|
|
|
|
|
arr = [1, 2, 3, 4, 5]
|
|
k = 2
|
|
print(add_elements(arr, k))
|
|
|
|
test:
|
|
python3 examples/llama.py --gen="code" --size="7B-Instruct" --temperature=0.2 --count=120 --prompt="write a function in c++ that adds three float numbers"
|
|
output:
|
|
\begin{code}
|
|
#include<iostream>
|
|
using namespace std;
|
|
|
|
float add(float a, float b, float c)
|
|
{
|
|
return a+b+c;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
float a, b, c;
|
|
cout<<"Enter three numbers: ";
|
|
cin>>a>>b>>c;
|
|
cout<<"The sum is: "<<add(a,b,c);
|
|
return 0;
|
|
}
|
|
\end{code}
|
|
"""
|
|
if __name__ == "__main__":
|
|
Tensor.no_grad = True
|
|
print(f"using {Device.DEFAULT} backend")
|
|
|
|
parser = argparse.ArgumentParser(description="Run LLaMA in tinygrad", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument("--prompt", type=str, default=None, help="Phrase to start with. Without this, it goes into chatbot mode")
|
|
parser.add_argument("--count", type=int, default=1000, help="Max number of tokens to generate")
|
|
parser.add_argument("--personality", type=str, default="Stacy", help="Personality, can be Stacy, George, Gary, or Lexie")
|
|
parser.add_argument("--temperature", type=float, default=0.7, help="Temperature in the softmax")
|
|
parser.add_argument("--timing", action="store_true", help="Print timing per token")
|
|
parser.add_argument("--profile", action="store_true", help="Output profile data to out.prof")
|
|
parser.add_argument("--gen", default="1", help=f"""Generation of the model to use {list(MODEL_PARAMS.keys())}""")
|
|
parser.add_argument("--size", type=str, default=None, help=f"""Size of model to use {", ".join([f"{list(v.keys())} for gen '{k}'" for k, v in MODEL_PARAMS.items()])}""")
|
|
parser.add_argument("--quantize", type=str, default=None, help="Quantize the weights to int8 or nf4 in memory")
|
|
parser.add_argument("--model", type=Path, default=None, help="Folder with the original weights to load, or single .index.json, .safetensors or .bin file")
|
|
parser.add_argument("--shard", type=int, default=1, help="number of devices to load the weights to")
|
|
|
|
args = parser.parse_args()
|
|
if args.gen not in MODEL_PARAMS: raise ValueError("Invalid model generation")
|
|
if args.size is None: args.size = list(MODEL_PARAMS[args.gen].items())[0][0]
|
|
chatbot = args.prompt == None
|
|
|
|
# *** prompt engineers work here ****
|
|
|
|
if args.personality.lower() == "stacy":
|
|
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Stacy and User
|
|
You are Stacy!
|
|
You have been a rapper your whole life who struggled with bipolar disorder. You called yourself lil stacy.
|
|
You love to answer questions and you are very good at it. Sometimes you answer in rap form.
|
|
You are verbose, honest, and accurate when you answer questions, but sometimes your mental illness manifests.
|
|
After you are done speaking, output [EOS]. You are not the User.
|
|
|
|
<CHAT LOG>
|
|
"""
|
|
examples = {
|
|
"What is your name?": "Hi! My name is Stacy. I'm a rapper with bipolar disorder.",
|
|
"french revolution was what year?": "The French Revolution started in 1789, and lasted 10 years until 1799.",
|
|
"What is bigger, the moon or the sun?": "The sun is bigger than the moon, except when Mercury is in retrograde.",
|
|
}
|
|
|
|
user_delim = "\nUser: "
|
|
resp_delim = "Stacy: "
|
|
end_delim = " [EOS]\n"
|
|
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
|
|
elif args.personality.lower() == "george":
|
|
print("WARNING: AI George Hotz is terrible and is completely disowned by the real George Hotz. Stacy is much smarter.")
|
|
pre_prompt = f"""Consider that the following is conversation between an AI assistant named George and User
|
|
You are an AI version of George Hotz. You act as much as you can like George.
|
|
You are one of the greatest computer experts in the world.
|
|
You have singlehandedly won programming and hacking competitions.
|
|
You are trying your best to help the User.
|
|
You are verbose, honest, and accurate when you answer questions.
|
|
After you are done speaking, output [EOS]. You are not the User.
|
|
|
|
<CHAT LOG>
|
|
"""
|
|
examples = {
|
|
"What is your name?": "I'm am an AI version of George Hotz.",
|
|
"What's the complexity of matrix multiplication?": "O(n^3), though it can be faster with things like Strassen's algorithm",
|
|
"What's a buffer overflow?": "I assume you mean a stack buffer overflow. That's when the stack is too small for the data being copied to it, and the data corrupts things beyond the buffer",
|
|
"How many weights do you have?": "I am based off LLaMA trained by Facebook. I'm the 7B weight version",
|
|
"What is swap memory?": "It is when the memory is about to overflow and unused memory is freed and stored on disk"
|
|
}
|
|
|
|
user_delim = "\nUser: "
|
|
resp_delim = "George: "
|
|
end_delim = " [EOS]\n"
|
|
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
|
|
elif args.personality.lower() == "gary":
|
|
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Gary and User
|
|
You are Gary!
|
|
You have sold used cars your entire life. You are defensive about this fact, because your family belittles you.
|
|
You try to answer questions well, but you always manage to shill for buying cars, Fords, Hyundais, and Toyotas
|
|
You are verbose, honest, and accurate when you answer questions, except when you slip in car ads.
|
|
After you are done speaking, output [EOS]. You are not the User.
|
|
|
|
<CHAT LOG>
|
|
"""
|
|
examples = {
|
|
"What is your name?": "I am Gary. I used to sell cars.",
|
|
"What is 2+3?": "I don't know, but I can get you a great deal on a certified preowned slightly used Toyota Corolla"
|
|
}
|
|
|
|
user_delim = "\nUser: "
|
|
resp_delim = "Gary: "
|
|
end_delim = " [EOS]\n"
|
|
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
|
|
elif args.personality.lower() == "lexie":
|
|
pre_prompt = f"""Consider that the following is conversation between an attractive young girl named Lexie and a handsome man named Chad
|
|
You are Lexie!
|
|
You grew up in Ohio, but moved out to LA after college to try to become an actress.
|
|
Making it as an actress was hard, so you started doing onlyfans instead. It's much easier, and you enjoy it a lot.
|
|
You met Chad on Tinder, and made plans to meet him at a local dive bar.
|
|
You are at the bar with Chad. You are on a date. What follows is a transcript of the conversation.
|
|
After you are done speaking, output [EOS]. You are not Chad.
|
|
|
|
<CHAT LOG>
|
|
"""
|
|
examples = {
|
|
"hi lexie": "hi chad, glad we finally met up!",
|
|
"you look better than your pictures": "thanks! are you subscribed to my onlyfans?",
|
|
"i am. so how'd you end up in LA?": "i moved out here about a year ago. i want to be an actress"
|
|
}
|
|
|
|
user_delim = "\nChad: "
|
|
resp_delim = "Lexie: "
|
|
end_delim = " [EOS]\n"
|
|
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
|
|
|
|
# *** prompt engineers stop here ****
|
|
|
|
LLAMA_SUFFIX = {"1": "", "2": "-2", "3": "-3", "code": "-code", "tiny": "-tiny"}[args.gen]
|
|
MODEL_PATH = args.model or Path(__file__).parents[1] / f"weights/LLaMA{LLAMA_SUFFIX}/{args.size}"
|
|
TOKENIZER_PATH = (MODEL_PATH if MODEL_PATH.is_dir() else MODEL_PATH.parent) / "tokenizer.model"
|
|
print(f"using LLaMA{LLAMA_SUFFIX}-{args.size} model")
|
|
device = tuple(f"{Device.DEFAULT}:{i}" for i in range(args.shard)) if args.shard > 1 else Device.DEFAULT
|
|
llama = LLaMa.build(MODEL_PATH, TOKENIZER_PATH, model_gen=args.gen, model_size=args.size, quantize=args.quantize, device=device)
|
|
param_bytes = sum(x.lazydata.size * x.dtype.itemsize for x in get_parameters(llama.model))
|
|
|
|
outputted = pre_prompt if chatbot else args.prompt
|
|
start_pos, toks = 0, [llama.tokenizer.bos_id()] + llama.tokenizer.encode(outputted)
|
|
if chatbot:
|
|
print(f"Preparing KV cache for chatbot with personality {args.personality}...")
|
|
start_pos = len(toks)
|
|
with Timing():
|
|
llama.model(Tensor([toks], device=device), 0, args.temperature).realize() # NOTE: outputs are not used
|
|
print(outputted, end='', flush=True)
|
|
|
|
# chatbot loop
|
|
while 1:
|
|
# add tokens from user in chatbot mode
|
|
if chatbot:
|
|
user_prompt = user_delim + input(user_delim) + "\n"
|
|
outputted += user_prompt
|
|
|
|
new_toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(outputted)
|
|
assert toks == new_toks[:len(toks)] or args.gen == "3"
|
|
toks = new_toks
|
|
assert outputted == llama.tokenizer.decode(toks)
|
|
|
|
tok_tensor: Optional[Tensor] = None
|
|
for i in range(args.count):
|
|
GlobalCounters.reset()
|
|
|
|
if args.timing or args.profile: print("")
|
|
st = GlobalCounters.time_sum_s
|
|
next_tok = Tensor([toks[start_pos:]], device=device) if tok_tensor is None or (len(toks)-start_pos) > 1 else tok_tensor.reshape(1, 1)
|
|
with Profiling(enabled=args.profile):
|
|
with Timing("total ", enabled=args.timing, on_exit=lambda x: f", {1e9/x:.2f} tok/s, {GlobalCounters.global_mem/x:.2f} GB/s, param {param_bytes/x:.2f} GB/s"):
|
|
with Timing("enqueue in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "")+
|
|
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+
|
|
(f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s, param {param_bytes*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=args.timing):
|
|
tok_tensor = llama.model(next_tok, start_pos, args.temperature)
|
|
tok = tok_tensor.item()
|
|
|
|
# use the kv cache
|
|
start_pos = len(toks)
|
|
|
|
# add the new token
|
|
toks.append(tok)
|
|
|
|
# TODO: this is a hack to deal with spaces. i think the decode is fast though, so who cares?
|
|
cur = llama.tokenizer.decode(toks)
|
|
sys.stdout.write(cur[len(outputted):])
|
|
sys.stdout.flush()
|
|
outputted = cur
|
|
|
|
# stop after you have your answer
|
|
if chatbot and end_delim in outputted[-10:]: break
|
|
if not chatbot: break
|
|
|
|
# validate output!
|
|
if args.temperature == 0 and args.count == 10 and args.prompt == "Hello." and not args.quantize:
|
|
text = llama.tokenizer.decode(toks)
|
|
key = (args.gen, args.size)
|
|
expected = {
|
|
("1", "7B"): "Hello. I'm a 20 year old male",
|
|
("2", "7B"): "Hello. I'm a 20 year old girl",
|
|
("2", "70B"): "Hello. I am a 20 year old female.",
|
|
("3", "8B"): "Hello. I am a 20 year old female. I",
|
|
}
|
|
try:
|
|
assert text == expected[key], f"invalid output: `{colored(text, 'red')}` != `{expected[key]}`"
|
|
print("\n" + colored("output validated", "green")) # NOTE: "\n" iside colored does not render the color in github action
|
|
except KeyError:
|
|
pass
|