tinygrad/examples/beautiful_mnist_multigpu.py

56 lines
2.2 KiB
Python

# model based off https://towardsdatascience.com/going-beyond-99-mnist-handwritten-digits-recognition-cfff96337392
from typing import List, Callable
from tinygrad import Tensor, TinyJit, nn, GlobalCounters, Device
from tinygrad.helpers import getenv, colored, trange
from tinygrad.nn.datasets import mnist
GPUS = [f'{Device.DEFAULT}:{i}' for i in range(getenv("GPUS", 2))]
class Model:
def __init__(self):
self.layers: List[Callable[[Tensor], Tensor]] = [
nn.Conv2d(1, 32, 5), Tensor.relu,
nn.Conv2d(32, 32, 5), Tensor.relu,
nn.BatchNorm2d(32), Tensor.max_pool2d,
nn.Conv2d(32, 64, 3), Tensor.relu,
nn.Conv2d(64, 64, 3), Tensor.relu,
nn.BatchNorm2d(64), Tensor.max_pool2d,
lambda x: x.flatten(1), nn.Linear(576, 10)]
def __call__(self, x:Tensor) -> Tensor: return x.sequential(self.layers)
if __name__ == "__main__":
X_train, Y_train, X_test, Y_test = mnist()
# we shard the test data on axis 0
X_test.shard_(GPUS, axis=0)
Y_test.shard_(GPUS, axis=0)
model = Model()
for k, x in nn.state.get_state_dict(model).items(): x.to_(GPUS) # we put a copy of the model on every GPU
opt = nn.optim.Adam(nn.state.get_parameters(model))
@TinyJit
def train_step() -> Tensor:
with Tensor.train():
opt.zero_grad()
samples = Tensor.randint(512, high=X_train.shape[0])
Xt, Yt = X_train[samples].shard_(GPUS, axis=0), Y_train[samples].shard_(GPUS, axis=0) # we shard the data on axis 0
# TODO: this "gather" of samples is very slow. will be under 5s when this is fixed
loss = model(Xt).sparse_categorical_crossentropy(Yt).backward()
opt.step()
return loss
@TinyJit
def get_test_acc() -> Tensor: return (model(X_test).argmax(axis=1) == Y_test).mean()*100
test_acc = float('nan')
for i in (t:=trange(70)):
GlobalCounters.reset() # NOTE: this makes it nice for DEBUG=2 timing
loss = train_step()
if i%10 == 9: test_acc = get_test_acc().item()
t.set_description(f"loss: {loss.item():6.2f} test_accuracy: {test_acc:5.2f}%")
# verify eval acc
if target := getenv("TARGET_EVAL_ACC_PCT", 0.0):
if test_acc >= target: print(colored(f"{test_acc=} >= {target}", "green"))
else: raise ValueError(colored(f"{test_acc=} < {target}", "red"))