tinygrad/extra/gemm/tf_gemm.py

33 lines
1.1 KiB
Python

import time
import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
for dtype in [tf.float16, tf.float32]:
for N in [256, 512, 1024, 2048, 4096, 8192]:
FLOPS = N*N*N*2
b = tf.random.uniform((N, N), dtype=dtype)
c = tf.random.uniform((N, N), dtype=dtype)
b = tf.Variable(b)
c = tf.Variable(c)
def tf_prog(b, c):
st = time.perf_counter()
a = tf.matmul(b, c)
tf.debugging.check_numerics(a, "Nan or Inf in result") # Ensures that the calculation is done.
return time.perf_counter() - st
tm = min([tf_prog(b, c) for _ in range(20)])
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS {N:4d}x{N:4d}x{N:4d} matmul in {dtype}")