mirror of https://github.com/commaai/tinygrad.git
33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
import time
|
|
import tensorflow as tf
|
|
|
|
gpus = tf.config.list_physical_devices('GPU')
|
|
if gpus:
|
|
try:
|
|
# Currently, memory growth needs to be the same across GPUs
|
|
for gpu in gpus:
|
|
tf.config.experimental.set_memory_growth(gpu, True)
|
|
logical_gpus = tf.config.list_logical_devices('GPU')
|
|
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
|
|
except RuntimeError as e:
|
|
# Memory growth must be set before GPUs have been initialized
|
|
print(e)
|
|
|
|
for dtype in [tf.float16, tf.float32]:
|
|
for N in [256, 512, 1024, 2048, 4096, 8192]:
|
|
FLOPS = N*N*N*2
|
|
|
|
b = tf.random.uniform((N, N), dtype=dtype)
|
|
c = tf.random.uniform((N, N), dtype=dtype)
|
|
|
|
b = tf.Variable(b)
|
|
c = tf.Variable(c)
|
|
|
|
def tf_prog(b, c):
|
|
st = time.perf_counter()
|
|
a = tf.matmul(b, c)
|
|
tf.debugging.check_numerics(a, "Nan or Inf in result") # Ensures that the calculation is done.
|
|
return time.perf_counter() - st
|
|
|
|
tm = min([tf_prog(b, c) for _ in range(20)])
|
|
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS {N:4d}x{N:4d}x{N:4d} matmul in {dtype}") |