mirror of https://github.com/commaai/tinygrad.git
113 lines
4.9 KiB
Python
113 lines
4.9 KiB
Python
import numpy as np
|
|
import time, torch, torch.mps
|
|
|
|
from tinygrad import Tensor, TinyJit, Device
|
|
from tinygrad.helpers import flat_mv
|
|
from tinygrad.runtime.ops_metal import MetalAllocator, MetalDevice, MetalProgram, MetalCompiler
|
|
|
|
N = 16384
|
|
M = 4096
|
|
FLOPS = N*M*2
|
|
|
|
nb = np.random.default_rng().standard_normal(size=(N), dtype=np.float32) #.astype(np.int32).astype(np.float32)
|
|
nc = np.random.default_rng().standard_normal(size=(N,M), dtype=np.float32) #.astype(np.int32).astype(np.float32)
|
|
|
|
b = torch.from_numpy(nb).to('mps')
|
|
c = torch.from_numpy(nc).to('mps')
|
|
|
|
def torch_prog(b, c):
|
|
st = time.perf_counter()
|
|
a = b@c
|
|
torch.mps.synchronize()
|
|
return time.perf_counter() - st
|
|
tm = min([torch_prog(b, c) for _ in range(200)])
|
|
print(f"{N:d}x{M:d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matvec in torch")
|
|
torch_a = (b@c).cpu()
|
|
|
|
device = MetalDevice("METAL")
|
|
metalalloc = MetalAllocator(device)
|
|
WORKSIZE_ROW = 16
|
|
WORKSIZE_COL = 1
|
|
LOCAL_SIZE = [32, WORKSIZE_COL, WORKSIZE_ROW]
|
|
GLOBAL_SIZE = [M//(LOCAL_SIZE[0]*LOCAL_SIZE[1]*4), 1, 1]
|
|
prog = MetalProgram(device, "test", MetalCompiler(device).compile(f"""
|
|
#include <metal_stdlib>
|
|
using namespace metal;
|
|
kernel void test(device float* data0, const device float* data1, const device float* data2, uint3 gid [[threadgroup_position_in_grid]], uint3 lid [[thread_position_in_threadgroup]]) {{
|
|
int gidx0 = gid.x; /* {GLOBAL_SIZE[0]} */
|
|
int lidx1 = lid.x; /* {LOCAL_SIZE[0]} */
|
|
int lidx2 = lid.y; /* {LOCAL_SIZE[1]} */
|
|
int lidx3 = lid.z; /* {LOCAL_SIZE[2]} */
|
|
|
|
// 4 rows per thread
|
|
threadgroup float4 acc0[{LOCAL_SIZE[0]*LOCAL_SIZE[1]*LOCAL_SIZE[2]}];
|
|
int acc0_index = ((lidx1*{LOCAL_SIZE[1]})+lidx2)+({LOCAL_SIZE[0]*LOCAL_SIZE[1]}*lidx3);
|
|
acc0[acc0_index] = float4(0.0f,0.0f,0.0f,0.0f);
|
|
|
|
threadgroup float4 val1[{LOCAL_SIZE[0]*LOCAL_SIZE[1]*LOCAL_SIZE[2]}];
|
|
|
|
// iterate over the columns
|
|
for (int ridx2 = 0; ridx2 < {N//(4*LOCAL_SIZE[0]*LOCAL_SIZE[1]*(LOCAL_SIZE[2]))}; ++ridx2) {{
|
|
// load 4*threadgroup_size columns into shared memory
|
|
int col_1 = (((lidx3*{N//(4*LOCAL_SIZE[0]*LOCAL_SIZE[1]*(LOCAL_SIZE[2]))})+ridx2)*{LOCAL_SIZE[0]*LOCAL_SIZE[1]})+(lidx1*{LOCAL_SIZE[1]})+lidx2;
|
|
val1[(lidx3*{LOCAL_SIZE[1]*LOCAL_SIZE[0]})+((lidx1*{LOCAL_SIZE[1]})+lidx2)] = *((device float4*)(data1+(col_1*4)));
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
for (int ridx3 = 0; ridx3 < {LOCAL_SIZE[0]*LOCAL_SIZE[1]}; ++ridx3) {{
|
|
int col = ((((lidx3*{N//(4*LOCAL_SIZE[0]*LOCAL_SIZE[1]*(LOCAL_SIZE[2]))})+ridx2)*{LOCAL_SIZE[0]*LOCAL_SIZE[1]})+ridx3);
|
|
float4 val1_0 = val1[(lidx3*{LOCAL_SIZE[1]*LOCAL_SIZE[0]})+ridx3];
|
|
float4 val2_0 = (float4)(*((device float4*)(data2+(gidx0*{M//GLOBAL_SIZE[0]})+(((lidx1*{LOCAL_SIZE[1]})+lidx2)*4)+(col*{M*4})+{M*0})));
|
|
float4 val2_1 = (float4)(*((device float4*)(data2+(gidx0*{M//GLOBAL_SIZE[0]})+(((lidx1*{LOCAL_SIZE[1]})+lidx2)*4)+(col*{M*4})+{M*1})));
|
|
float4 val2_2 = (float4)(*((device float4*)(data2+(gidx0*{M//GLOBAL_SIZE[0]})+(((lidx1*{LOCAL_SIZE[1]})+lidx2)*4)+(col*{M*4})+{M*2})));
|
|
float4 val2_3 = (float4)(*((device float4*)(data2+(gidx0*{M//GLOBAL_SIZE[0]})+(((lidx1*{LOCAL_SIZE[1]})+lidx2)*4)+(col*{M*4})+{M*3})));
|
|
acc0[acc0_index] = ((val1_0.x*val2_0)+acc0[acc0_index]);
|
|
acc0[acc0_index] = ((val1_0.y*val2_1)+acc0[acc0_index]);
|
|
acc0[acc0_index] = ((val1_0.z*val2_2)+acc0[acc0_index]);
|
|
acc0[acc0_index] = ((val1_0.w*val2_3)+acc0[acc0_index]);
|
|
}}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
}} /* reduce */
|
|
|
|
if (lidx3 == 0) {{
|
|
float4 out = float4(0.0f,0.0f,0.0f,0.0f);
|
|
for (int n = 0; n < {LOCAL_SIZE[2]}; n++) {{
|
|
out += acc0[((lidx1*{LOCAL_SIZE[1]})+lidx2)+({LOCAL_SIZE[0]*LOCAL_SIZE[1]}*n)];
|
|
}}
|
|
*( (device float4 *) (data0 + (gidx0*{M//GLOBAL_SIZE[0]}) + ( ( (lidx1*{LOCAL_SIZE[1]})+lidx2 ) * 4 ) ) ) = out;
|
|
}}
|
|
}}
|
|
"""))
|
|
a = metalalloc.alloc(M*4)
|
|
b = metalalloc.alloc(N*4)
|
|
c = metalalloc.alloc(N*M*4)
|
|
metalalloc.copyin(b,nb.tobytes())
|
|
metalalloc.copyin(c,nc.tobytes())
|
|
def metalrun():
|
|
prog(a, b, c, global_size=GLOBAL_SIZE, local_size=LOCAL_SIZE, wait=True)
|
|
return a
|
|
def timeit(fxn):
|
|
st = time.perf_counter()
|
|
et = fxn()
|
|
# NOTE: et doesn't contain the launch overhead
|
|
return time.perf_counter() - st
|
|
tm = min([timeit(metalrun) for _ in range(200)])
|
|
print(f"{N:d}x{M:d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matvec in metal")
|
|
metal_a = np.zeros(M, dtype=np.float32)
|
|
metalalloc.copyout(flat_mv(metal_a.data), a)
|
|
np.testing.assert_allclose(metal_a, torch_a, atol=5e-3)
|
|
|
|
b = Tensor(nb)
|
|
c = Tensor(nc)
|
|
# TODO: slowness without the JIT I suspect comes from a lack of a caching allocator
|
|
@TinyJit
|
|
def tiny_jit(b, c):
|
|
return (b@c).realize()
|
|
def tiny_prog(b, c):
|
|
st = time.perf_counter()
|
|
a = tiny_jit(b, c)
|
|
Device["METAL"].synchronize()
|
|
return time.perf_counter() - st
|
|
tm = min([tiny_prog(b, c) for _ in range(200)])
|
|
print(f"{N:d}x{M:d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matvec in tinygrad")
|
|
tiny_a = tiny_jit(b, c).numpy()
|
|
np.testing.assert_allclose(tiny_a, torch_a, atol=5e-3) |