tinygrad/extra/gemm/metal_conv.py

50 lines
1.5 KiB
Python

import os
#os.environ["METAL"] = "1"
import numpy as np
BS = 64
CIN = 256
COUT = 256
HW = 32
K = 3
PADDING = 0
# TODO: this is doing some trick, since with CIN=256 COUT=256 it's over 10.4 TFLOPS.
# are winograd convs less flops? it appears so if they are batched
# https://www.cse.ust.hk/~weiwa/papers/yan-ppopp20.pdf
FLOPS = BS*K*K*CIN*HW*HW*COUT*2
nb = np.random.default_rng().standard_normal(size=(BS,CIN,HW,HW), dtype=np.float32)
nc = np.random.default_rng().standard_normal(size=(COUT,CIN,K,K), dtype=np.float32)
try:
import time, torch, torch.mps
b = torch.from_numpy(nb).to('mps')
c = torch.from_numpy(nc).to('mps')
def torch_prog(b, c):
st = time.perf_counter()
a = torch.nn.functional.conv2d(b, c, padding=PADDING)
torch.mps.synchronize()
return time.perf_counter() - st
tm = min([torch_prog(b, c) for _ in range(20)])
print(f"{tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS conv in torch")
except RuntimeError:
print("no torch metal conv")
from tinygrad.tensor import Tensor
from tinygrad.engine.jit import TinyJit
from tinygrad import Device
b = Tensor(nb)
c = Tensor(nc)
# TODO: slowness without the JIT I suspect comes from a lack of a caching allocator
@TinyJit
def tiny_jit(b, c):
return b.conv2d(c, padding=PADDING).realize()
def tiny_prog(b, c):
st = time.perf_counter()
a = tiny_jit(b, c)
Device[a.device].synchronize()
return time.perf_counter() - st
tm = min([tiny_prog(b, c) for _ in range(5)])
print(f"{tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS conv in tinygrad")