mirror of https://github.com/commaai/tinygrad.git
44 lines
1.8 KiB
Python
44 lines
1.8 KiB
Python
import numpy as np
|
|
from tinygrad.helpers import getenv
|
|
from tinygrad import dtypes, Tensor
|
|
dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float
|
|
acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None
|
|
N_START = getenv("N_START", 1)
|
|
M_START = getenv("M_START", 1)
|
|
K_START = getenv("K_START", 1)
|
|
N_STOP = getenv("N_STOP", 32)
|
|
M_STOP = getenv("M_STOP", N_STOP)
|
|
K_STOP = getenv("K_STOP", N_STOP)
|
|
N_STEP = getenv("N_STEP", 1)
|
|
M_STEP = getenv("M_STEP", 1)
|
|
K_STEP = getenv("K_STEP", 1)
|
|
ATOL = getenv("ATOL", 1e-4)
|
|
RTOL = getenv("RTOL", 3e-2)
|
|
|
|
if __name__ == "__main__":
|
|
failed = []
|
|
for M in range(M_START, M_STOP+1, M_STEP):
|
|
for N in range(N_START, N_STOP+1, N_STEP):
|
|
for K in range(K_START, K_STOP+1, K_STEP):
|
|
print(f"testing {M=} {N=} {K=}")
|
|
a, b = Tensor.rand(M, K, dtype=dtype_in).realize(), Tensor.rand(K, N, dtype=dtype_in).realize()
|
|
c = a.matmul(b, acc_dtype=acc_dtype).realize()
|
|
comp = a.numpy().astype(np.float32) @ b.numpy().astype(np.float32)
|
|
nc = c.numpy()
|
|
try:
|
|
np.testing.assert_allclose(nc, comp, atol=ATOL, rtol=RTOL)
|
|
except AssertionError as e:
|
|
failed.append((M,N,K,))
|
|
if getenv("DEBUG_VALUES") > 0:
|
|
indices = np.where(~np.isclose(nc, comp, rtol=RTOL, atol=ATOL))
|
|
non_matching_elements_nc = nc[indices]
|
|
non_matching_elements_comp = comp[indices]
|
|
print(indices)
|
|
print("result :", non_matching_elements_nc)
|
|
print("ground truth:", non_matching_elements_comp)
|
|
print(e)
|
|
pass
|
|
print(f"failed sizes: {failed}")
|
|
print(f"num failures: {len(failed)}")
|
|
if len(failed) > 0:
|
|
raise RuntimeError(f"failed on {len(failed)} kernels") |