tinygrad/test/external/external_test_optim.py

176 lines
7.1 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow.python.ops import math_ops
from extra.lr_scheduler import LRSchedulerGroup
from tinygrad.tensor import Tensor
from tinygrad.nn.optim import LAMB, LARS, SGD, OptimizerGroup
from test.external.mlperf_resnet.lars_optimizer import LARSOptimizer
from examples.mlperf.lr_schedulers import PolynomialDecayWithWarmup
from test.external.mlperf_resnet.lars_util import PolynomialDecayWithWarmup as PolynomialDecayWithWarmup_tf
np.random.seed(1337)
x_init = np.random.randn(1,4).astype(np.float32)
W_init = np.random.randn(4,4).astype(np.float32)
m_init = np.random.randn(1,4).astype(np.float32)
class TinyNet:
def __init__(self):
self.x = Tensor(x_init.copy(), requires_grad=True)
self.W = Tensor(W_init.copy(), requires_grad=True)
self.m = Tensor(m_init.copy())
def forward(self):
out = self.x.matmul(self.W).relu()
out = out.log_softmax(1)
out = out.mul(self.m).add(self.m).sum()
return out
class TinyNetTF:
def __init__(self):
self.x = tf.Variable(x_init.copy(), trainable=True, name="x")
self.W = tf.Variable(W_init.copy(), trainable=True, name="W")
self.m = tf.constant(m_init.copy())
def forward(self):
out = tf.matmul(self.x, self.W)
out = tf.nn.relu(out)
out = tf.nn.log_softmax(out, axis=1)
out = tf.multiply(out, self.m) + self.m
out = tf.reduce_sum(out)
return out
def step(optim, steps=1, kwargs={}, scheduler=None, schedopts=None, do_optim=True):
net = TinyNet()
optim = optim([net.x, net.W], **kwargs)
if scheduler is not None: scheduler = scheduler(optim, **schedopts)
lrs = []
for _ in range(steps):
if do_optim:
out = net.forward()
optim.zero_grad()
out.backward()
lrs.append(optim.lr.item() if not isinstance(optim, OptimizerGroup) else optim.optimizers[0].lr.item())
if do_optim: optim.step()
if scheduler is not None: scheduler.step()
return lrs, net.x.detach().numpy(), net.W.detach().numpy()
def step_tf(optim, steps=1, kwargs={}, scheduler=None, schedopts=None, do_optim=True):
net = TinyNetTF()
if scheduler is not None: kwargs['lr'] = scheduler(**schedopts)
optim = optim(**kwargs)
lrs = []
for _ in range(steps):
if do_optim:
with tf.GradientTape() as tape:
out = net.forward()
lr_t = optim.learning_rate
# refer to test/external/mlperf_resnet/lars_optimizer.py:_prepare_local
if callable(lr_t): lr_t = lr_t(math_ops.cast(optim.iterations, tf.float32))
lrs.append(lr_t)
if do_optim:
grads = tape.gradient(out, [net.x, net.W])
optim.apply_gradients(zip(grads, [net.x, net.W]))
# optim calls scheduler in tf
else:
optim._iterations.assign_add(1)
return lrs, net.x.numpy(), net.W.numpy()
# skip list is skipping W
def create_tiny_lars(params, lr, skip_list=False):
if skip_list: return OptimizerGroup(LARS([params[0]], lr), SGD([params[1]], lr, classic=True, weight_decay=0., momentum=.9))
return LARS(params, lr)
def create_tf_lars(lr, skip_list=False): return LARSOptimizer(lr, skip_list=["W"] if skip_list else None)
def create_tiny_polylr(optim, initial_lr, end_lr, train_steps, warmup, power=2, skip_list=False):
assert power == 2
if skip_list: return LRSchedulerGroup(
PolynomialDecayWithWarmup(optim[0], initial_lr, end_lr, train_steps, warmup, power),
PolynomialDecayWithWarmup(optim[1], initial_lr, end_lr, train_steps, warmup, power))
return PolynomialDecayWithWarmup(optim, initial_lr, end_lr, train_steps, warmup, power)
def create_tf_polylr(initial_lr, end_lr, train_steps, warmup, power=2, skip_list=False):
assert power == 2
return PolynomialDecayWithWarmup_tf(1, 1, train_steps,
initial_learning_rate=initial_lr, end_learning_rate=end_lr, warmup_epochs=warmup)
class ExternalTestOptim(unittest.TestCase):
def setUp(self):
self.old_training = Tensor.training
Tensor.training = True
def tearDown(self):
Tensor.training = self.old_training
def _test_optim(self, tinygrad_optim, tensorflow_optim, steps, opts, atol, rtol, tiny_sched=None, tf_sched=None, schedopts=None, do_optim=True):
for x,y in zip(step(tinygrad_optim, steps=steps, kwargs=opts, scheduler=tiny_sched, schedopts=schedopts, do_optim=do_optim),
step_tf(tensorflow_optim, steps=steps, kwargs=opts, scheduler=tf_sched, schedopts=schedopts, do_optim=do_optim)):
np.testing.assert_allclose(x, y, atol=atol, rtol=rtol)
def _test_lamb(self, steps, opts, atol, rtol): self._test_optim(LAMB, tfa.optimizers.LAMB, steps, opts, atol, rtol)
def _test_lars(self, steps, opts, atol, rtol): self._test_optim(create_tiny_lars, create_tf_lars, steps, opts, atol, rtol)
def _test_lars_polylr(self, steps, opts, schedopts, atol, rtol, do_optim=True):
self._test_optim(create_tiny_lars, create_tf_lars, steps, opts, atol, rtol,
tiny_sched=create_tiny_polylr, tf_sched=create_tf_polylr, schedopts=schedopts, do_optim=do_optim)
def test_lamb(self): self._test_lamb(1, {'lr': 0.001}, 1e-5, 0)
def test_lamb_high_lr(self): self._test_lamb(1, {'lr': 10}, 1e-5, 1e-5)
def test_multistep_lamb(self): self._test_lamb(10, {'lr': 0.001}, 1e-5, 0)
def test_multistep_lamb_high_lr(self): self._test_lamb(10, {'lr': 10}, 1e-5, 3e-4)
def test_lars(self): self._test_lars(1, {'lr': 0.01}, 1e-5, 0)
def test_lars_high_lr(self): self._test_lars(1, {'lr': 10}, 1e-5, 1e-5)
def test_multistep_lars(self): self._test_lars(10, {'lr': 0.001}, 1e-5, 0)
def test_multistep_lars_high_lr(self): self._test_lars(10, {'lr': 10}, 1e-5, 3e-4)
def test_lars_skip(self): self._test_lars(10, {'lr': 10, 'skip_list': True}, 1e-5, 3e-4)
def test_lars_skip_high_lr(self): self._test_lars(1, {'lr': 10, 'skip_list': True}, 1e-5, 1e-5)
def test_lars_skip_multistep(self): self._test_lars(10, {'lr': 0.001, 'skip_list': True}, 1e-5, 0)
def test_lars_skip_multistep_high_lr(self): self._test_lars(10, {'lr': 10, 'skip_list': True}, 1e-5, 3e-4)
def test_lars_polylr(self):
self._test_lars_polylr(10, {'lr': 1.0}, {
'initial_lr': 1.0,
'end_lr': 1e-4,
'train_steps': 10,
'warmup': 3
}, 1e-5, 1e-5)
def test_lars_polylr_large(self):
self._test_lars_polylr(100, {'lr': 10.0}, {
'initial_lr': 10.0,
'end_lr': 1e-5,
'train_steps': 100,
'warmup': 43
}, 1e-5, 1e-5, do_optim=False)
def test_lars_polylr_skip(self):
self._test_lars_polylr(10, {'lr': 1.0, 'skip_list': True}, {
'initial_lr': 1.0,
'end_lr': 1e-4,
'train_steps': 10,
'warmup': 3,
'skip_list': True
}, 1e-5, 1e-5)
@unittest.skip("slow, but you can run this locally to check")
def test_lars_polylr_resnet(self):
train_files = 1_281_167
BS = 624
steps_per_epoch = train_files // BS
epochs = 45
warmup_epochs = 5
self._test_lars_polylr(steps_per_epoch * epochs, {'lr': 10.4}, {
'initial_lr': 10.4,
'end_lr': 1e-4,
# step counts for BS=624 EPOCHS=45 resnet
'train_steps': steps_per_epoch * epochs,
'warmup': steps_per_epoch * warmup_epochs,
}, 1e-5, 1e-5, do_optim=False)
if __name__ == '__main__':
unittest.main()