tinygrad/examples/sdv2.py

148 lines
5.6 KiB
Python

from tinygrad import Tensor, dtypes, TinyJit
from tinygrad.helpers import fetch
from tinygrad.nn.state import safe_load, load_state_dict, get_state_dict
from examples.stable_diffusion import AutoencoderKL, get_alphas_cumprod
from examples.sdxl import DPMPP2MSampler, append_dims, LegacyDDPMDiscretization
from extra.models.unet import UNetModel
from extra.models.clip import FrozenOpenClipEmbedder
from typing import Dict
import argparse, tempfile, os
from pathlib import Path
from PIL import Image
class DiffusionModel:
def __init__(self, model:UNetModel):
self.diffusion_model = model
@TinyJit
def run(model, x, tms, ctx, c_out, add):
return (model(x, tms, ctx)*c_out + add).realize()
# https://github.com/Stability-AI/stablediffusion/blob/cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf/ldm/models/diffusion/ddpm.py#L521
class StableDiffusionV2:
def __init__(self, unet_config:Dict, cond_stage_config:Dict, parameterization:str="v"):
self.model = DiffusionModel(UNetModel(**unet_config))
self.first_stage_model = AutoencoderKL()
self.cond_stage_model = FrozenOpenClipEmbedder(**cond_stage_config)
self.alphas_cumprod = get_alphas_cumprod()
self.parameterization = parameterization
self.discretization = LegacyDDPMDiscretization()
self.sigmas = self.discretization(1000, flip=True)
def denoise(self, x:Tensor, sigma:Tensor, cond:Dict) -> Tensor:
def sigma_to_idx(s:Tensor) -> Tensor:
dists = s - self.sigmas.unsqueeze(1)
return dists.abs().argmin(axis=0).view(*s.shape)
sigma = self.sigmas[sigma_to_idx(sigma)]
sigma_shape = sigma.shape
sigma = append_dims(sigma, x)
c_skip = 1.0 / (sigma**2 + 1.0)
c_out = -sigma / (sigma**2 + 1.0) ** 0.5
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5
c_noise = sigma_to_idx(sigma.reshape(sigma_shape))
def prep(*tensors:Tensor):
return tuple(t.cast(dtypes.float16).realize() for t in tensors)
return run(self.model.diffusion_model, *prep(x*c_in, c_noise, cond["crossattn"], c_out, x*c_skip))
def decode(self, x:Tensor, height:int, width:int) -> Tensor:
x = self.first_stage_model.post_quant_conv(1/0.18215 * x)
x = self.first_stage_model.decoder(x)
# make image correct size and scale
x = (x + 1.0) / 2.0
x = x.reshape(3,height,width).permute(1,2,0).clip(0,1).mul(255).cast(dtypes.uint8)
return x
params: Dict = {
"unet_config": {
"adm_in_ch": None,
"in_ch": 4,
"out_ch": 4,
"model_ch": 320,
"attention_resolutions": [4, 2, 1],
"num_res_blocks": 2,
"channel_mult": [1, 2, 4, 4],
"d_head": 64,
"transformer_depth": [1, 1, 1, 1],
"ctx_dim": 1024,
"use_linear": True,
},
"cond_stage_config": {
"dims": 1024,
"n_heads": 16,
"layers": 24,
"return_pooled": False,
"ln_penultimate": True,
}
}
if __name__ == "__main__":
default_prompt = "a horse sized cat eating a bagel"
parser = argparse.ArgumentParser(description='Run Stable Diffusion v2.X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--steps', type=int, default=10, help="The number of diffusion steps")
parser.add_argument('--prompt', type=str, default=default_prompt, help="Description of image to generate")
parser.add_argument('--out', type=str, default=Path(tempfile.gettempdir()) / "rendered.png", help="Output filename")
parser.add_argument('--seed', type=int, help="Set the random latent seed")
parser.add_argument('--guidance', type=float, default=7.5, help="Prompt strength")
parser.add_argument('--width', type=int, default=768, help="The output image width")
parser.add_argument('--height', type=int, default=768, help="The output image height")
parser.add_argument('--weights-fn', type=str, help="Filename of weights to use")
parser.add_argument('--weights-url', type=str, help="Custom URL to download weights from")
parser.add_argument('--timing', action='store_true', help="Print timing per step")
parser.add_argument('--noshow', action='store_true', help="Don't show the image")
parser.add_argument('--fp16', action='store_true', help="Cast the weights to float16")
args = parser.parse_args()
N = 1
C = 4
F = 8
assert args.width % F == 0, f"img_width must be multiple of {F}, got {args.width}"
assert args.height % F == 0, f"img_height must be multiple of {F}, got {args.height}"
Tensor.no_grad = True
if args.seed is not None:
Tensor.manual_seed(args.seed)
model = StableDiffusionV2(**params)
default_weights_url = 'https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.safetensors'
weights_fn = args.weights_fn
if not weights_fn:
weights_url = args.weights_url if args.weights_url else default_weights_url
weights_fn = fetch(weights_url, os.path.basename(str(weights_url)))
load_state_dict(model, safe_load(weights_fn), strict=False)
if args.fp16:
for k,v in get_state_dict(model).items():
if k.startswith("model"):
v.replace(v.cast(dtypes.float16).realize())
c = { "crossattn": model.cond_stage_model(args.prompt) }
uc = { "crossattn": model.cond_stage_model("") }
del model.cond_stage_model
print("created conditioning")
shape = (N, C, args.height // F, args.width // F)
randn = Tensor.randn(shape)
sampler = DPMPP2MSampler(args.guidance)
z = sampler(model.denoise, randn, c, uc, args.steps, timing=args.timing)
print("created samples")
x = model.decode(z, args.height, args.width).realize()
print("decoded samples")
print(x.shape)
im = Image.fromarray(x.numpy())
print(f"saving {args.out}")
im.save(args.out)
if not args.noshow:
im.show()