tinygrad/test/test_assign.py

236 lines
7.4 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad import dtypes, TinyJit, GlobalCounters, Variable
N = 200 # has to be bigger than the cache to fail
class TestAssign(unittest.TestCase):
def test_simple_assignment(self):
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
a.realize()
b.realize()
ba1 = a.lazydata.base.realized
bb1 = b.lazydata.base.realized
a += b
a.realize()
ba2 = a.lazydata.base.realized
assert ba1 == ba2 and ba1 != bb1
np.testing.assert_allclose(a.numpy(), (np.arange(N*N)*2).reshape((N,N)))
def test_assign_zeros_good(self):
a = Tensor.zeros(10,10).contiguous()
a.assign(Tensor.ones(10,10))
b = Tensor.zeros(10,10).contiguous()
a.realize()
np.testing.assert_allclose(b.numpy(), 0)
def test_assign_zeros(self):
a = Tensor.zeros(10,10).contiguous()
b = Tensor.zeros(10,10).contiguous()
#with self.assertRaises(RuntimeError):
a.assign(Tensor.ones(10,10))
a.realize()
np.testing.assert_allclose(b.numpy(), 0)
def test_assign_add(self):
def f(x):
x += 1
x.realize()
x = Tensor([0])
f(x)
assert x.item() == 1
def test_assign_add_twice(self):
# NOTE: this has two kernels
def f(x):
x += 1
x += 1
x.realize()
x = Tensor([0])
f(x)
assert x.item() == 2
def test_assign_add_double(self):
def f(x):
x += 1
x.realize()
x = Tensor([0])
f(x)
assert (out:=x.item()) == 1, f"expected 1, got {out}"
x = Tensor([0])
f(x)
assert (out:=x.item()) == 1, f"expected 1, got {out}"
def test_assign_add_jit(self):
@TinyJit
def f(x):
x += 1
x.realize()
x = Tensor([0])
for _ in range(5): f(x)
assert x.item() == 5
def test_assign_add_jit_other(self):
@TinyJit
def f(x):
x += 1
x.realize()
x = Tensor([0])
for _ in range(5): f(x)
y = Tensor([0])
for _ in range(4): f(y)
assert y.item() == 4
def test_assign_changes(self):
a = Tensor.ones(4).contiguous().realize()
old_a = a
a.assign(Tensor.full((4,), 2.).contiguous())
# NOTE: old_a is now 2, and this would match the behavior of pytorch
new = a + old_a
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond(self):
# NOTE: should *not* raise AssertionError from numpy
with self.assertRaises(RuntimeError):
a = Tensor.ones(4).contiguous().realize()
times_a = a*3
a.assign(Tensor.full((4,), 2.).contiguous())
new = a + times_a
np.testing.assert_allclose(new.numpy(), 5)
def test_assign_diamond_possible(self):
a = Tensor.ones(4).contiguous().realize()
times_a = a*3
a.assign(Tensor.full((4,), 2.))
new = a + (times_a-1).contiguous()
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond_possible_contiguous(self):
a = Tensor.ones(4).contiguous().realize()
times_a = a*3
a.assign(Tensor.full((4,), 2.).contiguous())
new = a + (times_a-1).contiguous()
np.testing.assert_allclose(new.numpy(), 4)
def test_assign_diamond_alt(self):
a = Tensor.ones(4).contiguous().realize()
a.assign(Tensor.full((4,), 2.).contiguous())
times_a = a*3
new = a + times_a
np.testing.assert_allclose(new.numpy(), 8)
def test_double_assign(self):
a = Tensor.ones(4).contiguous().realize()
a += 1
a += 1
np.testing.assert_allclose(a.numpy(), 3)
def test_crossover_assign(self):
a = Tensor.full((4,), 2).contiguous().realize()
b = Tensor.full((4,), 3).contiguous().realize()
a += b
b += a
Tensor.corealize([a,b])
np.testing.assert_allclose(a.numpy(), 5)
np.testing.assert_allclose(b.numpy(), 8)
def test_crossunder_assign(self):
# NOTE: should *not* raise AssertionError from numpy
with self.assertRaises(RuntimeError):
a = Tensor.full((4,), 2).contiguous().realize()
b = Tensor.full((4,), 3).contiguous().realize()
c = a+9
a += b
b += c
Tensor.corealize([a,b])
np.testing.assert_allclose(a.numpy(), 2+3)
np.testing.assert_allclose(b.numpy(), 3+2+9)
def test_assign_kv_cache(self):
bsz, max_context = 2, 8
class Attn:
@TinyJit
def __call__(self, xk:Tensor, start_pos:Variable):
seqlen = xk.shape[1]
if not hasattr(self, "cache_k"):
self.cache_k = Tensor.zeros(bsz, max_context, 1, 1).contiguous()
keys = self.cache_k.shrink((None, (0, start_pos), None, None)).cat(xk, dim=1).contiguous() if start_pos > 0 else xk
self.cache_k.assign(keys.pad((None,(0,max_context-start_pos-seqlen),None,None)).contiguous()).realize()
attn = Attn()
xk = Tensor.ones(bsz, 3, 1, 1).contiguous()
attn(xk, 0)
for i in range(3,6):
# copied from LLaMA
start_pos = Variable("start_pos", 1, max_context).bind(i)
xk = Tensor.ones(bsz, 1, 1, 1).contiguous()
attn(xk, start_pos)
out = attn.cache_k.flatten().numpy()
np.testing.assert_allclose(out, [1.,1.,1.,1.,1.,1.,0.,0.,1.,1.,1.,1.,1.,1.,0.,0.])
def test_assign_contiguous(self):
b = Tensor.rand(4,4).realize()
a = (Tensor.rand(4,4).realize() + 1)
kc = GlobalCounters.kernel_count
b.assign(a.contiguous()).realize()
assert GlobalCounters.kernel_count - kc == 2
def test_assign_contiguous_permute(self):
b = Tensor.rand(4,4).realize()
a = (Tensor.rand(4,4).realize() + 1).permute((1,0))
kc = GlobalCounters.kernel_count
b.assign(a.contiguous()).realize()
assert GlobalCounters.kernel_count - kc == 2
def test_permuted_assignment(self):
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
a.realize()
b.realize()
ba1 = a.lazydata.base.realized
bb1 = b.lazydata.base.realized
with self.assertRaises((RuntimeError, AssertionError)):
a = a.permute(1,0)
a += b
a.realize()
ba2 = a.lazydata.base.realized
assert ba1 != ba2 and ba1 != bb1
np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0))
def test_post_permuted_assignment(self):
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
a.realize()
b.realize()
#GlobalCounters.cache = []
ba1 = a.lazydata.base.realized # noqa: F841
bb1 = b.lazydata.base.realized # noqa: F841
with self.assertRaises(RuntimeError):
a.assign(a.permute(1,0) + b) # this should not work!
a.realize()
ba2 = a.lazydata.base.realized # noqa: F841
# NOTE: don't test that it's assigned
#assert ba1 == ba2 and ba1 != bb1
np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0))
# TODO: is there a way to sneak in a permute such that it returns the wrong answer?
@unittest.skip("don't use output buffer, and mismatch dtype no longer supported")
def test_cast_assignment(self):
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
a.realize()
oba1 = a.lazydata.base.output_buffer
a.assign(a.cast(dtypes.int32).realize())
a.realize()
oba2 = a.lazydata.base.output_buffer
assert oba1 is None and oba2 is None
np.testing.assert_allclose(a.numpy(), np.arange(N*N,dtype=np.int32).reshape((N,N)))
if __name__ == "__main__":
unittest.main()