tinygrad/test/external/external_test_onnx_backend.py

202 lines
7.6 KiB
Python

import unittest
from typing import Any, Tuple
from onnx.backend.base import Backend, BackendRep
import onnx.backend.test
import numpy as np
from tinygrad import Tensor, Device, dtypes
from tinygrad.helpers import getenv, OSX
from test.helpers import is_dtype_supported
# pip3 install tabulate
pytest_plugins = 'onnx.backend.test.report',
from extra.onnx import get_run_onnx
class TinygradModel(BackendRep):
def __init__(self, run_onnx, input_names):
super().__init__()
self.fxn = run_onnx
self.input_names = input_names
def run(self, inputs: Any, **kwargs: Any) -> Tuple[Any, ...]:
real_inputs = {k:v for k,v in zip(self.input_names, inputs)}
ret = self.fxn(real_inputs, debug=True)
return tuple(x.numpy() if isinstance(x, Tensor) else [i.numpy() for i in x] if isinstance(x, list) else np.array(x) for x in ret.values())
class TinygradBackend(Backend):
@classmethod
def prepare(cls, model, device):
input_all = [x.name for x in model.graph.input]
input_initializer = [x.name for x in model.graph.initializer]
net_feed_input = [x for x in input_all if x not in input_initializer]
print("prepare", cls, device, net_feed_input)
run_onnx = get_run_onnx(model)
return TinygradModel(run_onnx, net_feed_input)
@classmethod
def supports_device(cls, device: str) -> bool:
# NOTE: this is onnx CPU
return device == "CPU"
backend_test = onnx.backend.test.BackendTest(TinygradBackend, __name__)
# no support for reduce with multiply (needs llop)
backend_test.exclude('test_reduce_prod_*')
# TODO figure out why it's returning wrong values, geohotstan's uneducated guess is it's due to imprecision from float64 (double) -> float32
# see Type Constraints: https://onnx.ai/onnx/operators/onnx_aionnxpreviewtraining_Adam.html#type-constraints
backend_test.exclude('test_adam_multiple_cpu')
backend_test.exclude('test_nesterov_momentum_cpu')
# about different dtypes
if not is_dtype_supported(dtypes.float64):
backend_test.exclude('float64')
backend_test.exclude('DOUBLE')
# these have float64 inputs
backend_test.exclude('test_eyelike_with_dtype_cpu')
backend_test.exclude('test_reduce_log_sum_exp*')
backend_test.exclude('test_operator_add*')
backend_test.exclude('test_einsum_*')
backend_test.exclude('test_cumsum_*')
if not is_dtype_supported(dtypes.float16):
backend_test.exclude('float16')
backend_test.exclude('FLOAT16')
# dtype cast
backend_test.exclude('STRING')
backend_test.exclude('FLOAT8')
backend_test.exclude('BFLOAT16') # not supported in numpy
# TODO: fix these with true onnx float16
backend_test.exclude('to_FLOAT16')
backend_test.exclude('cast_no_saturate')
backend_test.exclude('test_pow_types_int*')
backend_test.exclude('test_convinteger_*')
backend_test.exclude('test_matmulinteger_*')
# we don't support indexes
backend_test.exclude('test_nonzero_*')
# no support for mod
backend_test.exclude('test_mod_*')
# no boolean ops (2d, 3d, 4d)
backend_test.exclude('test_bitshift_*')
# no string ops
backend_test.exclude('string')
backend_test.exclude('test_strnorm_*')
backend_test.exclude('test_regex_*')
# no scatternd gathernd
backend_test.exclude('test_gathernd_*')
backend_test.exclude('test_scatternd_*')
# no quantize
backend_test.exclude('test_dynamicquantizelinear_*')
backend_test.exclude('test_qlinearmatmul_*')
backend_test.exclude('test_qlinearconv_*')
backend_test.exclude('test_quantizelinear_*')
# no rnn
backend_test.exclude('test_gru_*')
backend_test.exclude('test_rnn_*')
backend_test.exclude('test_lstm_*')
backend_test.exclude('test_simple_rnn_*')
# no control flow
# control flow uses AttributeProto.GRAPH
backend_test.exclude('test_if_*')
backend_test.exclude('test_loop*')
backend_test.exclude('test_range_float_type_positive_delta_expanded_cpu') # requires loop
backend_test.exclude('test_affine_grid_2d_align_corners_expanded_cpu')
backend_test.exclude('test_affine_grid_2d_expanded_cpu')
backend_test.exclude('test_affine_grid_3d_align_corners_expanded_cpu')
backend_test.exclude('test_affine_grid_3d_expanded_cpu')
backend_test.exclude('test_range_int32_type_negative_delta_expanded_cpu')
# unsupported (strange) ops
backend_test.exclude('test_bitwise_*')
backend_test.exclude('test_blackmanwindow_*')
backend_test.exclude('test_bernoulli_*')
backend_test.exclude('test_det_*')
backend_test.exclude('test_col2im_*')
backend_test.exclude('test_hammingwindow_*')
backend_test.exclude('test_hannwindow_*')
backend_test.exclude('test_hardmax_*')
backend_test.exclude('test_gridsample_*')
backend_test.exclude('test_dft_*')
backend_test.exclude('test_einsum_batch_diagonal_cpu*') # TODO: equation = '...ii ->...i'
backend_test.exclude('test_einsum_inner_prod_cpu*') # TODO: equation = 'i,i'
backend_test.exclude('test_unique_*')
backend_test.exclude('test_sequence_*')
backend_test.exclude('test_nonmaxsuppression_*')
backend_test.exclude('test_reversesequence_*')
backend_test.exclude('test_roialign_*')
backend_test.exclude('test_top_k_*')
backend_test.exclude('test_tfidfvectorizer_*')
backend_test.exclude('test_stft_*')
backend_test.exclude('test_melweightmatrix_*')
# more strange ops
backend_test.exclude('test_basic_deform_conv_*')
backend_test.exclude('test_deform_conv_*')
backend_test.exclude('test_lppool_*')
backend_test.exclude('test_scan*')
backend_test.exclude('test_split_to_sequence_*')
backend_test.exclude('test_resize_downsample_scales_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_downsample_sizes_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_upsample_scales_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_upsample_sizes_cubic_*') # unsure how to implement cubic
# rest of the failing tests
backend_test.exclude('test_resize_downsample_scales_linear_antialias_cpu') # antialias not implemented
backend_test.exclude('test_resize_downsample_sizes_linear_antialias_cpu') # antialias not implemented
backend_test.exclude('test_resize_tf_crop_and_resize_cpu') # unsure about fill value after clip
backend_test.exclude('test_ai_onnx_ml_label_encoder_tensor_value_only_mapping_cpu') # bad data type string
backend_test.exclude('test_ai_onnx_ml_label_encoder_tensor_mapping_cpu') # bad data type string
if Device.DEFAULT in ['GPU', 'METAL']:
backend_test.exclude('test_resize_upsample_sizes_nearest_axes_2_3_cpu')
backend_test.exclude('test_resize_upsample_sizes_nearest_axes_3_2_cpu')
backend_test.exclude('test_resize_upsample_sizes_nearest_cpu')
if Device.DEFAULT == "METAL" or (OSX and Device.DEFAULT == "GPU"):
# numerical inaccuracy
backend_test.exclude('test_mish_cpu')
backend_test.exclude('test_mish_expanded_cpu')
# TODO: llvm has problems with inf
if Device.DEFAULT in ['LLVM']:
backend_test.exclude('test_isinf_cpu')
backend_test.exclude('test_isinf_negative_cpu')
backend_test.exclude('test_isinf_positive_cpu')
# # TODO: problems with nan
if Device.DEFAULT in ['LLVM']:
backend_test.exclude('test_isnan_float16_cpu')
backend_test.exclude('test_isnan_cpu')
# disable model tests for now since they are slow
if not getenv("MODELTESTS"):
for x in backend_test.test_suite:
if 'OnnxBackendRealModelTest' in str(type(x)):
backend_test.exclude(str(x).split(" ")[0])
else:
# model tests all pass!
backend_test.include('test_resnet50')
backend_test.include('test_inception_v1')
backend_test.include('test_inception_v2')
backend_test.include('test_densenet121')
backend_test.include('test_shufflenet')
backend_test.include('test_squeezenet')
backend_test.include('test_bvlc_alexnet')
backend_test.include('test_zfnet512')
backend_test.include('test_vgg19')
globals().update(backend_test.enable_report().test_cases)
if __name__ == '__main__':
unittest.main()