mirror of https://github.com/commaai/tinygrad.git
104 lines
3.5 KiB
Python
104 lines
3.5 KiB
Python
from lm_eval.base import BaseLM
|
|
from lm_eval import evaluator, tasks
|
|
import torch, json, argparse
|
|
|
|
from examples.llama import LLaMa
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad import Device
|
|
|
|
class LLaMaAdaptor(BaseLM):
|
|
def __init__(
|
|
self,
|
|
model_size="7B",
|
|
model_gen=1,
|
|
device="",
|
|
quantize=False,
|
|
batch_size=1,
|
|
max_batch_size=1,
|
|
do_sample=False,
|
|
temperature=1.0,
|
|
checkpoint_path="",
|
|
tokenizer_path="",
|
|
):
|
|
super().__init__()
|
|
|
|
if batch_size is None:
|
|
batch_size = 1
|
|
self.do_sample = do_sample
|
|
self.temperature = temperature
|
|
self._device = device
|
|
|
|
assert isinstance(model_gen, int)
|
|
assert isinstance(model_size, str)
|
|
assert isinstance(batch_size, int)
|
|
assert isinstance(checkpoint_path, str)
|
|
assert isinstance(tokenizer_path, str)
|
|
|
|
self.llama = LLaMa.build(checkpoint_path, tokenizer_path, model_gen, model_size, quantize)
|
|
|
|
@classmethod
|
|
def create_from_arg_string(cls, arg_string, additional_config=None):
|
|
kwargs = {el.split("=")[0]: el.split("=")[1] for el in arg_string.split(",")}
|
|
return cls(**kwargs, **additional_config)
|
|
|
|
@property
|
|
def eot_token_id(self):
|
|
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
|
return self.llama.tokenizer.eos_id()
|
|
|
|
@property
|
|
def max_length(self):
|
|
return 1024
|
|
|
|
@property
|
|
def max_gen_toks(self):
|
|
return 256
|
|
|
|
@property
|
|
def batch_size(self):
|
|
return 1
|
|
|
|
@property
|
|
def device(self):
|
|
return self._device
|
|
|
|
def tok_encode(self, string: str):
|
|
return [self.llama.tokenizer.bos_id()] + self.llama.tokenizer.encode(string)
|
|
|
|
def tok_decode(self, tokens):
|
|
return self.llama.tokenizer.decode(tokens)
|
|
|
|
def _model_call(self, inps):
|
|
Tensor.no_grad = True
|
|
return torch.Tensor(self.llama.model(Tensor(inps.numpy()), 0).numpy())
|
|
|
|
def greedy_until(self, requests):
|
|
continuations = []
|
|
for request in requests:
|
|
prompt, until = request[0], request[1]['until']
|
|
output = self.llama.greedy_until(prompt, until, max_length=128, temperature=0.0)
|
|
continuations.append(output[len(prompt):])
|
|
return continuations
|
|
|
|
def _model_generate(self, context, max_length, eos_token_id):
|
|
raise NotImplementedError()
|
|
|
|
if __name__ == '__main__':
|
|
print(f"using {Device.DEFAULT} backend")
|
|
|
|
parser = argparse.ArgumentParser(description='Run LLaMA evals in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument('--size', type=str, default="7B", help="Size of model to use [7B, 13B, 30B, 65B] for Gen 1, [7B, 13B] for Gen 2")
|
|
parser.add_argument('--gen', type=int, default="1", help="Generation of the model to use [1, 2]")
|
|
parser.add_argument('--quantize', action='store_true', help="Quantize the weights to int8 in memory")
|
|
parser.add_argument('--eval', type=str, default="arc_easy", help="Run in evaluation mode")
|
|
parser.add_argument('--limit', type=int, default=None, help="Limit tests in eval")
|
|
parser.add_argument('--weights', type=str, default="./weights/LLaMa/", help="Location of the weights")
|
|
parser.add_argument('--tokenizer', type=str, default="./weights/LLaMa/tokenizer.model", help="Location of the tokenizer")
|
|
args = parser.parse_args()
|
|
|
|
# run eval and exit
|
|
adaptor = LLaMaAdaptor(model_gen=args.gen, model_size=args.size, quantize=args.quantize,
|
|
checkpoint_path=args.weights, tokenizer_path=args.tokenizer, device="cpu")
|
|
results = evaluator.evaluate(adaptor, tasks.get_task_dict(args.eval.split(",")), False, 0, args.limit)
|
|
print(json.dumps(results, indent=2))
|