tinygrad/examples/mlperf/model_train.py

254 lines
9.9 KiB
Python

import functools
import os
import time
from tqdm import tqdm
from tinygrad import Device, GlobalCounters, Tensor, TinyJit, dtypes
from tinygrad.helpers import getenv, BEAM, WINO
from tinygrad.nn.state import get_parameters, get_state_dict, safe_load, safe_save
from tinygrad.nn.optim import LARS, SGD, OptimizerGroup
from extra.lr_scheduler import LRSchedulerGroup
from examples.mlperf.helpers import get_training_state, load_training_state
def train_resnet():
from extra.models import resnet
from examples.mlperf.dataloader import batch_load_resnet
from extra.datasets.imagenet import get_train_files, get_val_files
from examples.mlperf.lr_schedulers import PolynomialDecayWithWarmup
from examples.mlperf.initializers import Conv2dHeNormal, Linear
from examples.hlb_cifar10 import UnsyncedBatchNorm
config = {}
seed = config["seed"] = getenv("SEED", 42)
Tensor.manual_seed(seed) # seed for weight initialization
GPUS = config["GPUS"] = [f"{Device.DEFAULT}:{i}" for i in range(getenv("GPUS", 1))]
print(f"Training on {GPUS}")
for x in GPUS: Device[x]
# ** model definition and initializers **
num_classes = 1000
resnet.Conv2d = Conv2dHeNormal
resnet.Linear = Linear
if not getenv("SYNCBN"): resnet.BatchNorm = functools.partial(UnsyncedBatchNorm, num_devices=len(GPUS))
model = resnet.ResNet50(num_classes)
# shard weights and initialize in order
for k, x in get_state_dict(model).items():
if not getenv("SYNCBN") and ("running_mean" in k or "running_var" in k):
x.realize().shard_(GPUS, axis=0)
else:
x.realize().to_(GPUS)
parameters = get_parameters(model)
# ** hyperparameters **
epochs = config["epochs"] = getenv("EPOCHS", 41)
BS = config["BS"] = getenv("BS", 104 * len(GPUS)) # fp32 GPUS<=6 7900xtx can fit BS=112
EVAL_BS = config["EVAL_BS"] = getenv("EVAL_BS", BS)
base_lr = config["base_lr"] = getenv("LR", 8.5 * (BS/2048))
lr_warmup_epochs = config["lr_warmup_epochs"] = getenv("WARMUP_EPOCHS", 5)
decay = config["decay"] = getenv("DECAY", 2e-4)
target, achieved = getenv("TARGET", 0.759), False
eval_start_epoch = getenv("EVAL_START_EPOCH", 0)
eval_epochs = getenv("EVAL_EPOCHS", 1)
steps_in_train_epoch = config["steps_in_train_epoch"] = (len(get_train_files()) // BS)
steps_in_val_epoch = config["steps_in_val_epoch"] = (len(get_val_files()) // EVAL_BS)
config["BEAM"] = BEAM.value
config["WINO"] = WINO.value
config["SYNCBN"] = getenv("SYNCBN")
# ** Optimizer **
skip_list = [v for k, v in get_state_dict(model).items() if "bn" in k or "bias" in k or "downsample.1" in k]
parameters = [x for x in parameters if x not in set(skip_list)]
optimizer = LARS(parameters, base_lr, momentum=.9, weight_decay=decay)
optimizer_skip = SGD(skip_list, base_lr, momentum=.9, weight_decay=0.0, classic=True)
optimizer_group = OptimizerGroup(optimizer, optimizer_skip)
# ** LR scheduler **
scheduler = PolynomialDecayWithWarmup(optimizer, initial_lr=base_lr, end_lr=1e-4,
train_steps=epochs * steps_in_train_epoch,
warmup=lr_warmup_epochs * steps_in_train_epoch)
scheduler_skip = PolynomialDecayWithWarmup(optimizer_skip, initial_lr=base_lr, end_lr=1e-4,
train_steps=epochs * steps_in_train_epoch,
warmup=lr_warmup_epochs * steps_in_train_epoch)
scheduler_group = LRSchedulerGroup(scheduler, scheduler_skip)
print(f"training with batch size {BS} for {epochs} epochs")
# ** resume from checkpointing **
start_epoch = 0
if ckpt:=getenv("RESUME", ""):
load_training_state(model, optimizer_group, scheduler_group, safe_load(ckpt))
start_epoch = int(scheduler.epoch_counter.numpy().item() / steps_in_train_epoch)
print(f"resuming from {ckpt} at epoch {start_epoch}")
# ** init wandb **
WANDB = getenv("WANDB")
if WANDB:
import wandb
wandb_args = {"id": wandb_id, "resume": "must"} if (wandb_id := getenv("WANDB_RESUME", "")) else {}
wandb.init(config=config, **wandb_args)
BENCHMARK = getenv("BENCHMARK")
# ** jitted steps **
input_mean = Tensor([123.68, 116.78, 103.94], device=GPUS, dtype=dtypes.float32).reshape(1, -1, 1, 1)
# mlperf reference resnet does not divide by input_std for some reason
# input_std = Tensor([0.229, 0.224, 0.225], device=GPUS, dtype=dtypes.float32).reshape(1, -1, 1, 1)
def normalize(x): return x.permute([0, 3, 1, 2]) - input_mean
@TinyJit
def train_step(X, Y):
optimizer_group.zero_grad()
X = normalize(X)
out = model.forward(X)
loss = out.sparse_categorical_crossentropy(Y, label_smoothing=0.1)
top_1 = (out.argmax(-1) == Y).sum()
loss.backward()
optimizer_group.step()
scheduler_group.step()
return loss.realize(), top_1.realize()
@TinyJit
def eval_step(X, Y):
X = normalize(X)
out = model.forward(X)
loss = out.sparse_categorical_crossentropy(Y, label_smoothing=0.1)
top_1 = (out.argmax(-1) == Y).sum()
return loss.realize(), top_1.realize()
def data_get(it):
x, y, cookie = next(it)
return x.shard(GPUS, axis=0).realize(), Tensor(y, requires_grad=False).shard(GPUS, axis=0), cookie
# ** epoch loop **
step_times = []
for e in range(start_epoch, epochs):
# ** train loop **
Tensor.training = True
it = iter(tqdm(batch_load_resnet(batch_size=BS, val=False, shuffle=True, seed=seed*epochs + e),
total=steps_in_train_epoch, desc=f"epoch {e}", disable=BENCHMARK))
i, proc = 0, data_get(it)
st = time.perf_counter()
while proc is not None:
GlobalCounters.reset()
(loss, top_1_acc), proc = train_step(proc[0], proc[1]), proc[2]
pt = time.perf_counter()
try:
next_proc = data_get(it)
except StopIteration:
next_proc = None
dt = time.perf_counter()
device_str = loss.device if isinstance(loss.device, str) else f"{loss.device[0]} * {len(loss.device)}"
loss, top_1_acc = loss.numpy().item(), top_1_acc.numpy().item() / BS
cl = time.perf_counter()
if BENCHMARK:
step_times.append(cl - st)
tqdm.write(
f"{i:5} {((cl - st)) * 1000.0:7.2f} ms run, {(pt - st) * 1000.0:7.2f} ms python, {(dt - pt) * 1000.0:6.2f} ms fetch data, "
f"{(cl - dt) * 1000.0:7.2f} ms {device_str}, {loss:5.2f} loss, {top_1_acc:3.2f} acc, {optimizer.lr.numpy()[0]:.6f} LR, "
f"{GlobalCounters.mem_used / 1e9:.2f} GB used, {GlobalCounters.global_ops * 1e-9 / (cl - st):9.2f} GFLOPS")
if WANDB:
wandb.log({"lr": optimizer.lr.numpy(), "train/loss": loss, "train/top_1_acc": top_1_acc, "train/step_time": cl - st,
"train/python_time": pt - st, "train/data_time": dt - pt, "train/cl_time": cl - dt,
"train/GFLOPS": GlobalCounters.global_ops * 1e-9 / (cl - st), "epoch": e + (i + 1) / steps_in_train_epoch})
st = cl
proc, next_proc = next_proc, None # return old cookie
i += 1
if i == BENCHMARK:
median_step_time = sorted(step_times)[(BENCHMARK + 1) // 2] # in seconds
estimated_total_hours = median_step_time * steps_in_train_epoch * epochs / 60 / 60
print(f"Estimated training time: {estimated_total_hours:.0f}h{(estimated_total_hours - int(estimated_total_hours)) * 60:.0f}m")
return
# ** eval loop **
if (e + 1 - eval_start_epoch) % eval_epochs == 0:
train_step.reset() # free the train step memory :(
eval_loss = []
eval_times = []
eval_top_1_acc = []
Tensor.training = False
it = iter(tqdm(batch_load_resnet(batch_size=EVAL_BS, val=True, shuffle=False), total=steps_in_val_epoch))
proc = data_get(it)
while proc is not None:
GlobalCounters.reset()
st = time.time()
(loss, top_1_acc), proc = eval_step(proc[0], proc[1]), proc[2] # drop inputs, keep cookie
try:
next_proc = data_get(it)
except StopIteration:
next_proc = None
loss, top_1_acc = loss.numpy().item(), top_1_acc.numpy().item() / EVAL_BS
eval_loss.append(loss)
eval_top_1_acc.append(top_1_acc)
proc, next_proc = next_proc, None # return old cookie
et = time.time()
eval_times.append(et - st)
eval_step.reset()
total_loss = sum(eval_loss) / len(eval_loss)
total_top_1 = sum(eval_top_1_acc) / len(eval_top_1_acc)
total_fw_time = sum(eval_times) / len(eval_times)
tqdm.write(f"eval loss: {total_loss:.2f}, eval time: {total_fw_time:.2f}, eval top 1 acc: {total_top_1:.3f}")
if WANDB:
wandb.log({"eval/loss": total_loss, "eval/top_1_acc": total_top_1, "eval/forward_time": total_fw_time, "epoch": e + 1})
# save model if achieved target
if not achieved and total_top_1 >= target:
if not os.path.exists("./ckpts"): os.mkdir("./ckpts")
fn = f"./ckpts/resnet50.safe"
safe_save(get_state_dict(model), fn)
print(f" *** Model saved to {fn} ***")
achieved = True
# checkpoint every time we eval
if getenv("CKPT"):
if not os.path.exists("./ckpts"): os.mkdir("./ckpts")
if WANDB and wandb.run is not None:
fn = f"./ckpts/{time.strftime('%Y%m%d_%H%M%S')}_{wandb.run.id}_e{e}.safe"
else:
fn = f"./ckpts/{time.strftime('%Y%m%d_%H%M%S')}_e{e}.safe"
print(f"saving ckpt to {fn}")
safe_save(get_training_state(model, optimizer_group, scheduler_group), fn)
def train_retinanet():
# TODO: Retinanet
pass
def train_unet3d():
# TODO: Unet3d
pass
def train_rnnt():
# TODO: RNN-T
pass
def train_bert():
# TODO: BERT
pass
def train_maskrcnn():
# TODO: Mask RCNN
pass
if __name__ == "__main__":
with Tensor.train():
for m in getenv("MODEL", "resnet,retinanet,unet3d,rnnt,bert,maskrcnn").split(","):
nm = f"train_{m}"
if nm in globals():
print(f"training {m}")
globals()[nm]()