mirror of https://github.com/commaai/tinygrad.git
197 lines
7.3 KiB
Python
197 lines
7.3 KiB
Python
import dataclasses
|
|
import numpy as np
|
|
import torch
|
|
import unittest
|
|
import itertools
|
|
from tinygrad.tensor import Tensor, Device
|
|
from tinygrad.helpers import dtypes
|
|
from extra.gradcheck import numerical_jacobian, jacobian, gradcheck
|
|
|
|
x_init = np.random.randn(1,3).astype(np.float32)
|
|
U_init = np.random.randn(3,3).astype(np.float32)
|
|
V_init = np.random.randn(3,3).astype(np.float32)
|
|
W_init = np.random.randn(3,3).astype(np.float32)
|
|
m_init = np.random.randn(1,3).astype(np.float32)
|
|
|
|
class TestTinygrad(unittest.TestCase):
|
|
def test_zerodim_initialization(self):
|
|
a = Tensor(55)
|
|
b = Tensor(3.14)
|
|
|
|
self.assertEqual(a.shape, ())
|
|
self.assertEqual(b.shape, ())
|
|
|
|
def test_plus_equals(self):
|
|
a = Tensor.randn(10,10)
|
|
b = Tensor.randn(10,10)
|
|
c = a + b
|
|
val1 = c.numpy()
|
|
a += b
|
|
val2 = a.numpy()
|
|
np.testing.assert_allclose(val1, val2)
|
|
|
|
def test_backward_pass(self):
|
|
def test_tinygrad():
|
|
x = Tensor(x_init, requires_grad=True)
|
|
W = Tensor(W_init, requires_grad=True)
|
|
m = Tensor(m_init)
|
|
out = x.dot(W).relu()
|
|
out = out.log_softmax()
|
|
out = out.mul(m).add(m).sum()
|
|
out.backward()
|
|
return out.cpu().numpy(), x.grad.cpu().numpy(), W.grad.cpu().numpy()
|
|
|
|
def test_pytorch():
|
|
x = torch.tensor(x_init, requires_grad=True)
|
|
W = torch.tensor(W_init, requires_grad=True)
|
|
m = torch.tensor(m_init)
|
|
out = x.matmul(W).relu()
|
|
out = torch.nn.functional.log_softmax(out, dim=1)
|
|
out = out.mul(m).add(m).sum()
|
|
out.backward()
|
|
return out.detach().numpy(), x.grad, W.grad
|
|
|
|
for x,y in zip(test_tinygrad(), test_pytorch()):
|
|
np.testing.assert_allclose(x, y, atol=1e-5)
|
|
|
|
def test_backward_pass_diamond_model(self):
|
|
def test_tinygrad():
|
|
u = Tensor(U_init, requires_grad=True)
|
|
v = Tensor(V_init, requires_grad=True)
|
|
w = Tensor(W_init, requires_grad=True)
|
|
x = u.mul(v).relu()
|
|
y = u.mul(w).relu()
|
|
out = x.add(y).mul(y).relu()
|
|
out = out.log_softmax()
|
|
out = out.sum()
|
|
out.backward()
|
|
return out.cpu().numpy(), u.cpu().grad.numpy(), v.cpu().grad.numpy(), w.cpu().grad.numpy()
|
|
|
|
def test_pytorch():
|
|
u = torch.tensor(U_init, requires_grad=True)
|
|
v = torch.tensor(V_init, requires_grad=True)
|
|
w = torch.tensor(W_init, requires_grad=True)
|
|
x = u.mul(v).relu()
|
|
y = u.mul(w).relu()
|
|
out = x.add(y).mul(y).relu()
|
|
out = torch.nn.functional.log_softmax(out, dim=1)
|
|
out = out.sum()
|
|
out.backward()
|
|
return out.detach().numpy(), u.grad, v.grad, w.grad
|
|
|
|
for x,y in zip(test_tinygrad(), test_pytorch()):
|
|
np.testing.assert_allclose(x, y, atol=1e-5)
|
|
|
|
def test_nograd(self):
|
|
x = Tensor(x_init, requires_grad=False)
|
|
m = Tensor(m_init, requires_grad=False)
|
|
W = Tensor(W_init, requires_grad=True)
|
|
tmp = x.mul(m)
|
|
mm = tmp.matmul(W)
|
|
out = mm.relu()
|
|
out = out.sum()
|
|
out.backward()
|
|
assert x.grad is None
|
|
assert m.grad is None
|
|
assert tmp.grad is None
|
|
assert mm.grad is not None
|
|
assert W.grad is not None
|
|
|
|
def test_dropout(self):
|
|
Tensor.training = True
|
|
n, rate = 1_000_000, 0.1
|
|
w = Tensor.ones(n).dropout(rate)
|
|
non_zeros = np.count_nonzero(w.cpu().numpy())
|
|
expected = n * (1 - rate)
|
|
np.testing.assert_allclose(non_zeros, expected, rtol=2e-3)
|
|
|
|
def test_jacobian(self):
|
|
W = np.random.RandomState(42069).random((10, 5)).astype(np.float32)
|
|
x = np.random.RandomState(69420).random((1, 10)).astype(np.float32)
|
|
|
|
torch_x = torch.tensor(x, requires_grad=True)
|
|
torch_W = torch.tensor(W, requires_grad=True)
|
|
torch_func = lambda x: torch.nn.functional.log_softmax(x.matmul(torch_W).relu(), dim=1)
|
|
PJ = torch.autograd.functional.jacobian(torch_func, torch_x).squeeze().numpy()
|
|
|
|
tiny_x = Tensor(x, requires_grad=True)
|
|
tiny_W = Tensor(W, requires_grad=True)
|
|
tiny_func = lambda x: x.dot(tiny_W).relu().log_softmax()
|
|
J = jacobian(tiny_func, tiny_x)
|
|
NJ = numerical_jacobian(tiny_func, tiny_x)
|
|
|
|
np.testing.assert_allclose(PJ, J, atol = 1e-5)
|
|
np.testing.assert_allclose(PJ, NJ, atol = 1e-3)
|
|
|
|
def test_gradcheck(self):
|
|
W = np.random.RandomState(1337).random((10, 5)).astype(np.float32)
|
|
x = np.random.RandomState(7331).random((1, 10)).astype(np.float32)
|
|
|
|
tiny_x = Tensor(x, requires_grad=True)
|
|
tiny_W = Tensor(W, requires_grad=True)
|
|
tiny_func = lambda x: x.dot(tiny_W).relu().log_softmax()
|
|
|
|
self.assertTrue(gradcheck(tiny_func, tiny_x, eps = 1e-3))
|
|
|
|
# coarse approx. since a "big" eps and the non-linearities of the model
|
|
self.assertFalse(gradcheck(tiny_func, tiny_x, eps = 1e-5))
|
|
|
|
def test_random_fns_are_deterministic_with_seed(self):
|
|
for random_fn in [Tensor.randn, Tensor.uniform, Tensor.scaled_uniform, Tensor.glorot_uniform]:
|
|
with self.subTest(msg=f"Tensor.{random_fn.__name__}"):
|
|
Tensor.manual_seed(1337)
|
|
a = random_fn(10,10).realize()
|
|
Tensor.manual_seed(1337)
|
|
b = random_fn(10,10).realize()
|
|
np.testing.assert_allclose(a.numpy(), b.numpy())
|
|
|
|
def test_randn_isnt_inf_on_zero(self):
|
|
# simulate failure case of rand handing a zero to randn
|
|
original_rand, Tensor.rand = Tensor.rand, Tensor.zeros
|
|
try: self.assertNotIn(np.inf, Tensor.randn(16).numpy())
|
|
except: raise
|
|
finally: Tensor.rand = original_rand
|
|
|
|
def test_zeros_like_has_same_dtype(self):
|
|
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
|
|
a = Tensor([1, 2, 3], dtype=datatype)
|
|
b = Tensor.zeros_like(a)
|
|
assert a.dtype == b.dtype, f"a.dtype and b.dtype should be {datatype}"
|
|
assert a.shape == b.shape, f"shape mismatch (Tensor.zeros_like){a.shape} != (torch){b.shape}"
|
|
|
|
a = Tensor([1, 2, 3])
|
|
b = Tensor.zeros_like(a, dtype=dtypes.int8)
|
|
assert a.dtype != b.dtype and a.dtype == dtypes.float32 and b.dtype == dtypes.int8, "a.dtype should be float and b.dtype should be char"
|
|
assert a.shape == b.shape, f"shape mismatch (Tensor.zeros_like){a.shape} != (torch){b.shape}"
|
|
|
|
def test_ones_like_has_same_dtype_and_shape(self):
|
|
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
|
|
a = Tensor([1, 2, 3], dtype=datatype)
|
|
b = Tensor.ones_like(a)
|
|
assert a.dtype == b.dtype, f"a.dtype and b.dtype should be {datatype}"
|
|
assert a.shape == b.shape, f"shape mismatch (Tensor.ones_like){a.shape} != (torch){b.shape}"
|
|
|
|
a = Tensor([1, 2, 3])
|
|
b = Tensor.ones_like(a, dtype=dtypes.int8)
|
|
assert a.dtype != b.dtype and a.dtype == dtypes.float32 and b.dtype == dtypes.int8, "a.dtype should be float and b.dtype should be char"
|
|
assert a.shape == b.shape, f"shape mismatch (Tensor.ones_like){a.shape} != (torch){b.shape}"
|
|
|
|
def test_ndim(self):
|
|
assert Tensor.randn(1).ndim == 1
|
|
assert Tensor.randn(2,2,2).ndim == 3
|
|
assert Tensor.randn(1,1,1,1,1,1).ndim == 6
|
|
|
|
def test_numel(self):
|
|
assert Tensor.randn(10, 10).numel() == 100
|
|
assert Tensor.randn(1,2,5).numel() == 10
|
|
assert Tensor.randn(1,1,1,1,1,1).numel() == 1
|
|
assert Tensor([]).numel() == 0
|
|
# assert Tensor.randn(1,0,2,5) == 0 # TODO: fix empty tensors
|
|
|
|
def test_element_size(self):
|
|
for _, dtype in dtypes.fields().items():
|
|
assert dtype.itemsize == Tensor.randn(3, dtype=dtype).element_size(), f"Tensor.element_size() not matching Tensor.dtype.itemsize for {dtype}"
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|