tinygrad/extra/hip_wrapper.py

693 lines
26 KiB
Python

import ctypes
from tinygrad.helpers import DEBUG
import sys
import numpy as np
from typing import Any, Dict, List, Tuple
from dataclasses import dataclass
try:
_libhip = ctypes.cdll.LoadLibrary("libamdhip64.so")
_libhiprtc = ctypes.cdll.LoadLibrary("libhiprtc.so")
_libhip.hipGetErrorString.restype = ctypes.c_char_p
_libhip.hipGetErrorString.argtypes = [ctypes.c_int]
def hipGetErrorString(status):
return _libhip.hipGetErrorString(status).decode("utf-8")
def hipCheckStatus(status):
if status != 0: raise RuntimeError("HIP error %s: %s" % (status, hipGetErrorString(status)))
_libhip.hipDeviceSynchronize.restype = int
_libhip.hipDeviceSynchronize.argtypes = []
def hipDeviceSynchronize():
status = _libhip.hipDeviceSynchronize()
hipCheckStatus(status)
_libhip.hipStreamSynchronize.restype = int
_libhip.hipStreamSynchronize.argtypes = [ctypes.c_void_p]
def hipStreamSynchronize(stream):
status = _libhip.hipStreamSynchronize(stream)
hipCheckStatus(status)
_libhip.hipEventCreate.restype = int
_libhip.hipEventCreate.argtypes = [ctypes.POINTER(ctypes.c_void_p)]
def hipEventCreate():
ptr = ctypes.c_void_p()
status = _libhip.hipEventCreate(ctypes.byref(ptr))
hipCheckStatus(status)
return ptr
_libhip.hipEventRecord.restype = int
_libhip.hipEventRecord.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def hipEventRecord(event, stream=None):
status = _libhip.hipEventRecord(event, stream)
hipCheckStatus(status)
_libhip.hipEventDestroy.restype = int
_libhip.hipEventDestroy.argtypes = [ctypes.c_void_p]
def hipEventDestroy(event):
status = _libhip.hipEventDestroy(event)
hipCheckStatus(status)
_libhip.hipEventSynchronize.restype = int
_libhip.hipEventSynchronize.argtypes = [ctypes.c_void_p]
def hipEventSynchronize(event):
status = _libhip.hipEventSynchronize(event)
hipCheckStatus(status)
_libhip.hipEventElapsedTime.restype = int
_libhip.hipEventElapsedTime.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_void_p, ctypes.c_void_p]
def hipEventElapsedTime(start, stop):
t = ctypes.c_float()
status = _libhip.hipEventElapsedTime(ctypes.byref(t), start, stop)
hipCheckStatus(status)
return t.value
## Stream Management
# Stream capture modes:
hipStreamCaptureModeGlobal = 0
hipStreamCaptureModeThreadLocal = 1
hipStreamCaptureModeRelaxed = 2
_libhip.hipStreamCreate.restype = int
_libhip.hipStreamCreate.argtypes = [ctypes.POINTER(ctypes.c_void_p)]
def hipStreamCreate():
ptr = ctypes.c_void_p()
status = _libhip.hipStreamCreate(ctypes.byref(ptr))
hipCheckStatus(status)
return ptr
_libhip.hipStreamDestroy.restype = int
_libhip.hipStreamDestroy.argtypes = [ctypes.c_void_p]
def hipStreamDestroy(stream):
status = _libhip.hipStreamDestroy(stream)
hipCheckStatus(status)
_libhip.hipStreamBeginCapture.restype = int
_libhip.hipStreamBeginCapture.argtypes = [ctypes.c_void_p, ctypes.c_int]
def hipStreamBeginCapture(stream, mode=hipStreamCaptureModeGlobal):
t = ctypes.c_float()
status = _libhip.hipStreamBeginCapture(stream, mode)
hipCheckStatus(status)
_libhip.hipStreamEndCapture.restype = int
_libhip.hipStreamEndCapture.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def hipStreamEndCapture(stream):
ptr = ctypes.c_void_p()
status = _libhip.hipStreamEndCapture(stream, ctypes.byref(ptr))
hipCheckStatus(status)
return ptr
_libhip.hipStreamGetCaptureInfo_v2.restype = int
_libhip.hipStreamGetCaptureInfo_v2.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
def hipStreamGetCaptureInfo_v2(stream):
status_out = ctypes.c_void_p()
id_out = ctypes.c_ulonglong()
graph_out = ctypes.c_void_p()
deps_out = ctypes.POINTER(ctypes.c_void_p)()
num_deps = ctypes.c_size_t()
status = _libhip.hipStreamGetCaptureInfo_v2(stream, ctypes.byref(status_out), ctypes.byref(id_out), ctypes.byref(graph_out), ctypes.byref(deps_out), ctypes.byref(num_deps))
hipCheckStatus(status)
deps = [ctypes.cast(deps_out[i], ctypes.c_void_p) for i in range(num_deps.value)]
return status_out, id_out.value, graph_out, deps
hipStreamAddCaptureDependencies = 0
hipStreamSetCaptureDependencies = 1
_libhip.hipStreamUpdateCaptureDependencies.restype = int
_libhip.hipStreamUpdateCaptureDependencies.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_size_t, ctypes.c_uint]
def hipStreamUpdateCaptureDependencies(stream, deps, flags=hipStreamAddCaptureDependencies):
deps_in = (ctypes.c_void_p * len(deps))()
deps_in[:] = deps
num_deps = ctypes.c_size_t()
num_deps.value = len(deps)
flags_in = ctypes.c_uint()
flags_in.value = flags
status = _libhip.hipStreamUpdateCaptureDependencies(stream, deps_in, num_deps, flags_in)
hipCheckStatus(status)
## Graph Management
_libhip.hipGraphCreate.restype = int
_libhip.hipGraphCreate.argtypes = [ctypes.c_void_p, ctypes.c_uint]
def hipGraphCreate():
ptr = ctypes.c_void_p()
status = _libhip.hipGraphCreate(ctypes.byref(ptr), 0)
hipCheckStatus(status)
return ptr
_libhip.hipGraphInstantiate.restype = int
_libhip.hipGraphInstantiate.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
def hipGraphInstantiate(graph):
ptr = ctypes.c_void_p()
status = _libhip.hipGraphInstantiate(ctypes.byref(ptr), graph, 0, 0, 0)
hipCheckStatus(status)
return ptr
_libhip.hipGraphDestroy.restype = int
_libhip.hipGraphDestroy.argtypes = [ctypes.c_void_p]
def hipGraphDestroy(graph):
status = _libhip.hipGraphDestroy(graph)
hipCheckStatus(status)
_libhip.hipGraphExecDestroy.restype = int
_libhip.hipGraphExecDestroy.argtypes = [ctypes.c_void_p]
def hipGraphExecDestroy(gexec):
status = _libhip.hipGraphExecDestroy(gexec)
hipCheckStatus(status)
_libhip.hipGraphLaunch.restype = int
_libhip.hipGraphLaunch.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def hipGraphLaunch(graph_exec, stream=0):
status = _libhip.hipGraphLaunch(graph_exec, stream)
hipCheckStatus(status)
class hipKernelNodeParams(ctypes.Structure):
_fields_ = [("blockDimX", ctypes.c_uint32), ("blockDimY", ctypes.c_uint32), ("blockDimZ", ctypes.c_uint32),
("extra", ctypes.POINTER(ctypes.c_void_p)),
("func", ctypes.c_void_p),
("gridDimX", ctypes.c_uint32), ("gridDimY", ctypes.c_uint32), ("gridDimZ", ctypes.c_uint32),
("kernelParams", ctypes.POINTER(ctypes.c_void_p)),
("sharedMemBytes", ctypes.c_uint32)]
@dataclass
class kernelNodeParamsWrapper():
c_struct: Any
context: Any = None
# Better to cache struct_types since they reused often and take a lot of time to create.
struct_type_cache: Dict[str, Any] = {}
def __get_struct(name, field_list):
global struct_type_cache
if name in struct_type_cache:
return struct_type_cache[name]
class CStructure(ctypes.Structure):
_fields_ = field_list
struct_type_cache[name] = CStructure
return struct_type_cache[name]
def getStructTypeForArgs(*args):
types = ""
fields: List[Tuple[str, Any]] = []
for idx in range(len(args)):
if args[idx].__class__ is int:
types += 'i'
fields.append((f'field{idx}', ctypes.c_int))
else:
types += 'P'
fields.append((f'field{idx}', ctypes.c_void_p))
return __get_struct(types, fields)
def updateKernelNodeParams(npwrapper:kernelNodeParamsWrapper, *args, grid=(1,1,1), block=(1,1,1), updated_args=None):
_, struct, _ = npwrapper.context
if updated_args is not None:
for i in updated_args:
setattr(struct, f'field{i}', (args[i] if args[i].__class__ is int else args[i]._buf))
else:
for i,d in enumerate(args):
setattr(struct, f'field{i}', (d if d.__class__ is int else d._buf))
npwrapper.c_struct.blockDimX = block[0]
npwrapper.c_struct.blockDimY = block[1]
npwrapper.c_struct.blockDimZ = block[2]
npwrapper.c_struct.gridDimX = grid[0]
npwrapper.c_struct.gridDimY = grid[1]
npwrapper.c_struct.gridDimZ = grid[2]
def buildKernelNodeParams(*args, func=None, grid=(1,1,1), block=(1,1,1), sharedMemBytes=0, argsStructType=None):
data = [d if d.__class__ is int else d._buf for d in args]
if argsStructType is None: argsStructType = getStructTypeForArgs(*args)
struct = argsStructType(*data)
size = ctypes.c_size_t(ctypes.sizeof(struct))
p_size = ctypes.c_void_p(ctypes.addressof(size))
p_struct = ctypes.c_void_p(ctypes.addressof(struct))
config = (ctypes.c_void_p * 5)(ctypes.c_void_p(1), p_struct,
ctypes.c_void_p(2), p_size, ctypes.c_void_p(3))
params = hipKernelNodeParams(block[0], block[1], block[2], config, func, grid[0], grid[1], grid[2], None, sharedMemBytes)
return kernelNodeParamsWrapper(c_struct=params, context=(size, struct, config))
_libhip.hipGraphAddKernelNode.restype = int
_libhip.hipGraphAddKernelNode.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_size_t, ctypes.c_void_p]
def hipGraphAddKernelNode(graph, deps, params:kernelNodeParamsWrapper):
graph_node = ctypes.c_void_p()
deps_in = (ctypes.c_void_p * len(deps))()
deps_in[:] = deps
num_deps = ctypes.c_size_t(len(deps))
status = _libhip.hipGraphAddKernelNode(ctypes.byref(graph_node), graph, deps_in, num_deps, ctypes.byref(params.c_struct))
hipCheckStatus(status)
return graph_node
_libhip.hipGraphExecKernelNodeSetParams.restype = int
_libhip.hipGraphExecKernelNodeSetParams.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
def hipGraphExecKernelNodeSetParams(gexec, node, params:kernelNodeParamsWrapper):
status = _libhip.hipGraphExecKernelNodeSetParams(gexec, node, ctypes.byref(params.c_struct))
hipCheckStatus(status)
_libhip.hipMalloc.restype = int
_libhip.hipMalloc.argtypes = [ctypes.POINTER(ctypes.c_void_p), ctypes.c_size_t]
def hipMalloc(count):
ptr = ctypes.c_void_p()
status = _libhip.hipMalloc(ctypes.byref(ptr), count)
hipCheckStatus(status)
return ptr.value
_libhip.hipFree.restype = int
_libhip.hipFree.argtypes = [ctypes.c_void_p]
def hipFree(ptr):
status = _libhip.hipFree(ptr)
hipCheckStatus(status)
# memory copy modes
hipMemcpyHostToHost = 0
hipMemcpyHostToDevice = 1
hipMemcpyDeviceToHost = 2
hipMemcpyDeviceToDevice = 3
hipMemcpyDefault = 4
_libhip.hipMemcpy.restype = int
_libhip.hipMemcpy.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_size_t, ctypes.c_int]
def hipMemcpy(dst, src, count, direction):
status = _libhip.hipMemcpy(dst, src, ctypes.c_size_t(count), direction)
hipCheckStatus(status)
_libhip.hipMemcpyAsync.restype = int
_libhip.hipMemcpyAsync.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_size_t, ctypes.c_int, ctypes.c_void_p]
def hipMemcpyAsync(dst, src, count, direction, stream):
status = _libhip.hipMemcpyAsync(dst, src, ctypes.c_size_t(count), direction, stream)
hipCheckStatus(status)
_libhip.hipDeviceEnablePeerAccess.restype = int
_libhip.hipDeviceEnablePeerAccess.argtypes = [ctypes.c_int, ctypes.c_uint]
def hipDeviceEnablePeerAccess(peerDevice, flags):
status = _libhip.hipDeviceEnablePeerAccess(peerDevice, flags)
hipCheckStatus(status)
_libhip.hipMemGetInfo.restype = int
_libhip.hipMemGetInfo.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def hipMemGetInfo():
free = ctypes.c_size_t()
total = ctypes.c_size_t()
status = _libhip.hipMemGetInfo(ctypes.byref(free), ctypes.byref(total))
hipCheckStatus(status)
return free.value, total.value
class hipIpcMemHandle_t(ctypes.Structure):
_fields_ = [("reserved", ctypes.c_char * 64)]
_libhip.hipIpcGetMemHandle.restype = int
_libhip.hipIpcGetMemHandle.argtypes = [ctypes.POINTER(hipIpcMemHandle_t), ctypes.c_void_p]
def hipIpcGetMemHandle(ptr):
handle = hipIpcMemHandle_t()
status = _libhip.hipIpcGetMemHandle(ctypes.byref(handle), ptr)
hipCheckStatus(status)
return handle
_libhip.hipIpcOpenMemHandle.restype = int
_libhip.hipIpcOpenMemHandle.argtypes = [ctypes.POINTER(ctypes.c_void_p), hipIpcMemHandle_t, ctypes.c_uint]
def hipIpcOpenMemHandle(handle, flags):
ptr = ctypes.c_void_p()
status = _libhip.hipIpcOpenMemHandle(ctypes.byref(ptr), handle, flags)
hipCheckStatus(status)
return ptr.value
_libhip.hipIpcCloseMemHandle.restype = int
_libhip.hipIpcCloseMemHandle.argtypes = [ctypes.c_void_p]
def hipIpcCloseMemHandle(ptr):
status = _libhip.hipIpcCloseMemHandle(ptr)
hipCheckStatus(status)
_libhip.hipSetDevice.restype = int
_libhip.hipSetDevice.argtypes = [ctypes.c_int]
def hipSetDevice(dev):
status = _libhip.hipSetDevice(dev)
hipCheckStatus(status)
_libhip.hipGetDevice.restype = int
_libhip.hipGetDevice.argtypes = [ctypes.POINTER(ctypes.c_int)]
def hipGetDevice():
dev = ctypes.c_int()
status = _libhip.hipGetDevice(ctypes.byref(dev))
hipCheckStatus(status)
return dev.value
_libhip.hipGetDeviceCount.restype = int
_libhip.hipGetDeviceCount.argtypes = [ctypes.POINTER(ctypes.c_int)]
def hipGetDeviceCount():
count = ctypes.c_int()
status = _libhip.hipGetDeviceCount(ctypes.byref(count))
hipCheckStatus(status)
return count.value
class hipDeviceArch(ctypes.Structure):
_fields_ = [
# *32-bit Atomics*
# 32-bit integer atomics for global memory.
("hasGlobalInt32Atomics", ctypes.c_uint, 1),
# 32-bit float atomic exch for global memory.
("hasGlobalFloatAtomicExch", ctypes.c_uint, 1),
# 32-bit integer atomics for shared memory.
("hasSharedInt32Atomics", ctypes.c_uint, 1),
# 32-bit float atomic exch for shared memory.
("hasSharedFloatAtomicExch", ctypes.c_uint, 1),
# 32-bit float atomic add in global and shared memory.
("hasFloatAtomicAdd", ctypes.c_uint, 1),
# *64-bit Atomics*
# 64-bit integer atomics for global memory.
("hasGlobalInt64Atomics", ctypes.c_uint, 1),
# 64-bit integer atomics for shared memory.
("hasSharedInt64Atomics", ctypes.c_uint, 1),
# *Doubles*
# Double-precision floating point.
("hasDoubles", ctypes.c_uint, 1),
# *Warp cross-lane operations*
# Warp vote instructions (__any, __all).
("hasWarpVote", ctypes.c_uint, 1),
# Warp ballot instructions (__ballot).
("hasWarpBallot", ctypes.c_uint, 1),
# Warp shuffle operations. (__shfl_*).
("hasWarpShuffle", ctypes.c_uint, 1),
# Funnel two words into one with shift&mask caps.
("hasFunnelShift", ctypes.c_uint, 1),
# *Sync*
# __threadfence_system.
("hasThreadFenceSystem", ctypes.c_uint, 1),
# __syncthreads_count, syncthreads_and, syncthreads_or.
("hasSyncThreadsExt", ctypes.c_uint, 1),
# *Misc*
# Surface functions.
("hasSurfaceFuncs", ctypes.c_uint, 1),
# Grid and group dims are 3D (rather than 2D).
("has3dGrid", ctypes.c_uint, 1),
# Dynamic parallelism.
("hasDynamicParallelism", ctypes.c_uint, 1),
]
class hipDeviceProperties(ctypes.Structure):
_fields_ = [
# Device name
("_name", ctypes.c_char * 256),
# Size of global memory region (in bytes)
("totalGlobalMem", ctypes.c_size_t),
# Size of shared memory region (in bytes).
("sharedMemPerBlock", ctypes.c_size_t),
# Registers per block.
("regsPerBlock", ctypes.c_int),
# Warp size.
("warpSize", ctypes.c_int),
# Max work items per work group or workgroup max size.
("maxThreadsPerBlock", ctypes.c_int),
# Max number of threads in each dimension (XYZ) of a block.
("maxThreadsDim", ctypes.c_int * 3),
# Max grid dimensions (XYZ).
("maxGridSize", ctypes.c_int * 3),
# Max clock frequency of the multiProcessors in khz.
("clockRate", ctypes.c_int),
# Max global memory clock frequency in khz.
("memoryClockRate", ctypes.c_int),
# Global memory bus width in bits.
("memoryBusWidth", ctypes.c_int),
# Size of shared memory region (in bytes).
("totalConstMem", ctypes.c_size_t),
# Major compute capability. On HCC, this is an approximation and features may
# differ from CUDA CC. See the arch feature flags for portable ways to query
# feature caps.
("major", ctypes.c_int),
# Minor compute capability. On HCC, this is an approximation and features may
# differ from CUDA CC. See the arch feature flags for portable ways to query
# feature caps.
("minor", ctypes.c_int),
# Number of multi-processors (compute units).
("multiProcessorCount", ctypes.c_int),
# L2 cache size.
("l2CacheSize", ctypes.c_int),
# Maximum resident threads per multi-processor.
("maxThreadsPerMultiProcessor", ctypes.c_int),
# Compute mode.
("computeMode", ctypes.c_int),
# Frequency in khz of the timer used by the device-side "clock*"
# instructions. New for HIP.
("clockInstructionRate", ctypes.c_int),
# Architectural feature flags. New for HIP.
("arch", hipDeviceArch),
# Device can possibly execute multiple kernels concurrently.
("concurrentKernels", ctypes.c_int),
# PCI Domain ID
("pciDomainID", ctypes.c_int),
# PCI Bus ID.
("pciBusID", ctypes.c_int),
# PCI Device ID.
("pciDeviceID", ctypes.c_int),
# Maximum Shared Memory Per Multiprocessor.
("maxSharedMemoryPerMultiProcessor", ctypes.c_size_t),
# 1 if device is on a multi-GPU board, 0 if not.
("isMultiGpuBoard", ctypes.c_int),
# Check whether HIP can map host memory
("canMapHostMemory", ctypes.c_int),
# DEPRECATED: use gcnArchName instead
("gcnArch", ctypes.c_int),
# AMD GCN Arch Name.
("_gcnArchName", ctypes.c_char * 256),
# APU vs dGPU
("integrated", ctypes.c_int),
# HIP device supports cooperative launch
("cooperativeLaunch", ctypes.c_int),
# HIP device supports cooperative launch on multiple devices
("cooperativeMultiDeviceLaunch", ctypes.c_int),
# Maximum size for 1D textures bound to linear memory
("maxTexture1DLinear", ctypes.c_int),
# Maximum number of elements in 1D images
("maxTexture1D", ctypes.c_int),
# Maximum dimensions (width, height) of 2D images, in image elements
("maxTexture2D", ctypes.c_int * 2),
# Maximum dimensions (width, height, depth) of 3D images, in image elements
("maxTexture3D", ctypes.c_int * 3),
# Addres of HDP_MEM_COHERENCY_FLUSH_CNTL register
("hdpMemFlushCntl", ctypes.POINTER(ctypes.c_uint)),
# Addres of HDP_REG_COHERENCY_FLUSH_CNTL register
("hdpRegFlushCntl", ctypes.POINTER(ctypes.c_uint)),
# Maximum pitch in bytes allowed by memory copies
("memPitch", ctypes.c_size_t),
# Alignment requirement for textures
("textureAlignment", ctypes.c_size_t),
# Pitch alignment requirement for texture references bound to pitched memory
("texturePitchAlignment", ctypes.c_size_t),
# Run time limit for kernels executed on the device
("kernelExecTimeoutEnabled", ctypes.c_int),
# Device has ECC support enabled
("ECCEnabled", ctypes.c_int),
# 1:If device is Tesla device using TCC driver, else 0
("tccDriver", ctypes.c_int),
# HIP device supports cooperative launch on multiple
# devices with unmatched functions
("cooperativeMultiDeviceUnmatchedFunc", ctypes.c_int),
# HIP device supports cooperative launch on multiple
# devices with unmatched grid dimensions
("cooperativeMultiDeviceUnmatchedGridDim", ctypes.c_int),
# HIP device supports cooperative launch on multiple
# devices with unmatched block dimensions
("cooperativeMultiDeviceUnmatchedBlockDim", ctypes.c_int),
# HIP device supports cooperative launch on multiple
# devices with unmatched shared memories
("cooperativeMultiDeviceUnmatchedSharedMem", ctypes.c_int),
# 1: if it is a large PCI bar device, else 0
("isLargeBar", ctypes.c_int),
# Revision of the GPU in this device
("asicRevision", ctypes.c_int),
# Device supports allocating managed memory on this system
("managedMemory", ctypes.c_int),
# Host can directly access managed memory on the device without migration
("directManagedMemAccessFromHost", ctypes.c_int),
# Device can coherently access managed memory concurrently with the CPU
("concurrentManagedAccess", ctypes.c_int),
# Device supports coherently accessing pageable memory
# without calling hipHostRegister on it
("pageableMemoryAccess", ctypes.c_int),
# Device accesses pageable memory via the host"s page tables
("pageableMemoryAccessUsesHostPageTables", ctypes.c_int),
]
@property
def name(self):
return self._name.decode("utf-8")
@property
def gcnArchName(self):
return self._gcnArchName.decode("utf-8")
_libhip.hipGetDeviceProperties.restype = int
_libhip.hipGetDeviceProperties.argtypes = [ctypes.POINTER(hipDeviceProperties), ctypes.c_int]
def hipGetDeviceProperties(deviceId: int):
device_properties = hipDeviceProperties()
status = _libhip.hipGetDeviceProperties(ctypes.pointer(device_properties), deviceId)
hipCheckStatus(status)
return device_properties
_libhip.hipModuleLoadData.restype = int
_libhip.hipModuleLoadData.argtypes = [ctypes.POINTER(ctypes.c_void_p), ctypes.c_void_p]
def hipModuleLoadData(data):
module = ctypes.c_void_p()
status = _libhip.hipModuleLoadData(ctypes.byref(module), data)
hipCheckStatus(status)
return module
_libhip.hipModuleGetFunction.restype = int
_libhip.hipModuleGetFunction.argtypes = [ctypes.POINTER(ctypes.c_void_p), ctypes.c_void_p, ctypes.POINTER(ctypes.c_char)]
def hipModuleGetFunction(module, func_name):
kernel = ctypes.c_void_p()
status = _libhip.hipModuleGetFunction(ctypes.byref(kernel), module, func_name.encode("utf-8"))
hipCheckStatus(status)
return kernel
_libhip.hipModuleUnload.restype = int
_libhip.hipModuleUnload.argtypes = [ctypes.c_void_p]
def hipModuleUnload(module):
status = _libhip.hipModuleUnload(module)
hipCheckStatus(status)
_libhip.hipModuleLaunchKernel.restype = int
_libhip.hipModuleLaunchKernel.argtypes = [ctypes.c_void_p,
ctypes.c_uint, ctypes.c_uint, ctypes.c_uint, # block dim
ctypes.c_uint, ctypes.c_uint, ctypes.c_uint, # thread dim
ctypes.c_uint, ctypes.c_void_p,
ctypes.POINTER(ctypes.c_void_p), ctypes.POINTER(ctypes.c_void_p)]
def hipModuleLaunchKernel(kernel, bx, by, bz, tx, ty, tz, shared, stream, struct):
c_bx, c_by, c_bz = ctypes.c_uint(bx), ctypes.c_uint(by), ctypes.c_uint(bz)
c_tx, c_ty, c_tz = ctypes.c_uint(tx), ctypes.c_uint(ty), ctypes.c_uint(tz)
c_shared = ctypes.c_uint(shared)
param_buffer_ptr, param_buffer_size, param_buffer_end = ctypes.c_void_p(1), ctypes.c_void_p(2), ctypes.c_void_p(3)
size = ctypes.c_size_t(ctypes.sizeof(struct))
p_size, p_struct = ctypes.c_void_p(ctypes.addressof(size)), ctypes.c_void_p(ctypes.addressof(struct))
config = (ctypes.c_void_p * 5)(param_buffer_ptr, p_struct, param_buffer_size, p_size, param_buffer_end)
status = _libhip.hipModuleLaunchKernel(kernel, c_bx, c_by, c_bz, c_tx, c_ty, c_tz, c_shared, stream, None, config)
hipCheckStatus(status)
_libhiprtc.hiprtcCreateProgram.restype = int
_libhiprtc.hiprtcCreateProgram.argtypes = [ctypes.POINTER(ctypes.c_void_p), ctypes.POINTER(ctypes.c_char), ctypes.POINTER(ctypes.c_char),
ctypes.c_int, ctypes.POINTER(ctypes.c_char_p), ctypes.POINTER(ctypes.c_char_p)]
def hiprtcCreateProgram(source, name, header_names, header_sources):
c_header_names, c_header_sources = (ctypes.c_char_p * len(header_names))(), (ctypes.c_char_p * len(header_sources))()
c_header_names[:], c_header_sources[:] = [h.encode("utf-8") for h in header_names], [h.encode("utf-8") for h in header_sources]
prog = ctypes.c_void_p()
status = _libhiprtc.hiprtcCreateProgram(ctypes.byref(prog), source.encode("utf-8"), name.encode("utf-8"), len(header_names), c_header_sources, c_header_names)
hipCheckStatus(status)
return prog
_libhiprtc.hiprtcDestroyProgram.restype = int
_libhiprtc.hiprtcDestroyProgram.argtypes = [ctypes.POINTER(ctypes.c_void_p)]
def hiprtcDestroyProgram(prog):
status = _libhiprtc.hiprtcDestroyProgram(ctypes.byref(prog))
hipCheckStatus(status)
_libhiprtc.hiprtcGetProgramLogSize.restype = int
_libhiprtc.hiprtcGetProgramLogSize.argtypes = [ctypes.c_void_p, ctypes.POINTER(ctypes.c_size_t)]
_libhiprtc.hiprtcGetProgramLog.restype = int
_libhiprtc.hiprtcGetProgramLog.argtypes = [ctypes.c_void_p, ctypes.c_char_p]
def hiprtcGetProgramLog(prog):
logsz = ctypes.c_size_t()
status = _libhiprtc.hiprtcGetProgramLogSize(prog, logsz)
hipCheckStatus(status)
logstr = ctypes.create_string_buffer(logsz.value)
status = _libhiprtc.hiprtcGetProgramLog(prog, logstr)
hipCheckStatus(status)
return logstr.value.decode()
_libhiprtc.hiprtcCompileProgram.restype = int
_libhiprtc.hiprtcCompileProgram.argtypes = [ctypes.c_void_p, ctypes.c_int, ctypes.POINTER(ctypes.c_char_p)]
def hiprtcCompileProgram(prog, options):
c_options = (ctypes.c_char_p * len(options))()
c_options[:] = [o.encode("utf-8") for o in options]
status = _libhiprtc.hiprtcCompileProgram(prog, len(options), c_options)
if status == 6: print(hiprtcGetProgramLog(prog))
hipCheckStatus(status)
_libhiprtc.hiprtcGetCodeSize.restype = int
_libhiprtc.hiprtcGetCodeSize.argtypes = [ctypes.c_void_p, ctypes.POINTER(ctypes.c_size_t)]
_libhiprtc.hiprtcGetCode.restype = int
_libhiprtc.hiprtcGetCode.argtypes = [ctypes.c_void_p, ctypes.POINTER(ctypes.c_char)]
def hiprtcGetCode(prog):
code_size = ctypes.c_size_t()
status = _libhiprtc.hiprtcGetCodeSize(prog, ctypes.byref(code_size))
hipCheckStatus(status)
e_code = ("0" * code_size.value).encode("utf-8")
status = _libhiprtc.hiprtcGetCode(prog, e_code)
hipCheckStatus(status)
return e_code
except:
if DEBUG >= 1: print("WARNING: libamdhip64.so or libhiprtc.so not found. HIP support will not work.")