tinygrad/disassemblers/adreno/ir3.h

1758 lines
47 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef IR3_H_
#define IR3_H_
#include <stdint.h>
#include <stdbool.h>
#include "shader_enums.h"
#include "util/list.h"
#include "util/bitscan.h"
/*#include "util/list.h"
#include "util/set.h"
#include "util/u_debug.h"*/
#define debug_assert(x) assert(x)
#include "instr-a3xx.h"
/* low level intermediate representation of an adreno shader program */
struct ir3_compiler;
struct ir3;
struct ir3_instruction;
struct ir3_block;
struct ir3_info {
uint32_t gpu_id;
uint16_t sizedwords;
uint16_t instrs_count; /* expanded to account for rpt's */
uint16_t nops_count; /* # of nop instructions, including nopN */
uint16_t mov_count;
uint16_t cov_count;
/* NOTE: max_reg, etc, does not include registers not touched
* by the shader (ie. vertex fetched via VFD_DECODE but not
* touched by shader)
*/
int8_t max_reg; /* highest GPR # used by shader */
int8_t max_half_reg;
int16_t max_const;
/* number of sync bits: */
uint16_t ss, sy;
/* estimate of number of cycles stalled on (ss) */
uint16_t sstall;
uint16_t last_baryf; /* instruction # of last varying fetch */
};
struct ir3_register {
enum {
IR3_REG_CONST = 0x001,
IR3_REG_IMMED = 0x002,
IR3_REG_HALF = 0x004,
/* high registers are used for some things in compute shaders,
* for example. Seems to be for things that are global to all
* threads in a wave, so possibly these are global/shared by
* all the threads in the wave?
*/
IR3_REG_HIGH = 0x008,
IR3_REG_RELATIV= 0x010,
IR3_REG_R = 0x020,
/* Most instructions, it seems, can do float abs/neg but not
* integer. The CP pass needs to know what is intended (int or
* float) in order to do the right thing. For this reason the
* abs/neg flags are split out into float and int variants. In
* addition, .b (bitwise) operations, the negate is actually a
* bitwise not, so split that out into a new flag to make it
* more clear.
*/
IR3_REG_FNEG = 0x040,
IR3_REG_FABS = 0x080,
IR3_REG_SNEG = 0x100,
IR3_REG_SABS = 0x200,
IR3_REG_BNOT = 0x400,
IR3_REG_EVEN = 0x800,
IR3_REG_POS_INF= 0x1000,
/* (ei) flag, end-input? Set on last bary, presumably to signal
* that the shader needs no more input:
*/
IR3_REG_EI = 0x2000,
/* meta-flags, for intermediate stages of IR, ie.
* before register assignment is done:
*/
IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
IR3_REG_ARRAY = 0x8000,
} flags;
/* used for cat5 instructions, but also for internal/IR level
* tracking of what registers are read/written by an instruction.
* wrmask may be a bad name since it is used to represent both
* src and dst that touch multiple adjacent registers.
*/
unsigned wrmask : 16; /* up to vec16 */
/* for relative addressing, 32bits for array size is too small,
* but otoh we don't need to deal with disjoint sets, so instead
* use a simple size field (number of scalar components).
*
* Note the size field isn't important for relative const (since
* we don't have to do register allocation for constants).
*/
unsigned size : 15;
bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
/* normal registers:
* the component is in the low two bits of the reg #, so
* rN.x becomes: (N << 2) | x
*/
uint16_t num;
union {
/* immediate: */
int32_t iim_val;
uint32_t uim_val;
float fim_val;
/* relative: */
struct {
uint16_t id;
int16_t offset;
} array;
};
/* For IR3_REG_SSA, src registers contain ptr back to assigning
* instruction.
*
* For IR3_REG_ARRAY, the pointer is back to the last dependent
* array access (although the net effect is the same, it points
* back to a previous instruction that we depend on).
*/
struct ir3_instruction *instr;
};
/*
* Stupid/simple growable array implementation:
*/
#define DECLARE_ARRAY(type, name) \
unsigned name ## _count, name ## _sz; \
type * name;
#define array_insert(ctx, arr, val) do { \
if (arr ## _count == arr ## _sz) { \
arr ## _sz = MAX2(2 * arr ## _sz, 16); \
arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
} \
arr[arr ##_count++] = val; \
} while (0)
struct ir3_instruction {
struct ir3_block *block;
opc_t opc;
enum {
/* (sy) flag is set on first instruction, and after sample
* instructions (probably just on RAW hazard).
*/
IR3_INSTR_SY = 0x001,
/* (ss) flag is set on first instruction, and first instruction
* to depend on the result of "long" instructions (RAW hazard):
*
* rcp, rsq, log2, exp2, sin, cos, sqrt
*
* It seems to synchronize until all in-flight instructions are
* completed, for example:
*
* rsq hr1.w, hr1.w
* add.f hr2.z, (neg)hr2.z, hc0.y
* mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
* rsq hr2.x, hr2.x
* (rpt1)nop
* mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
* nop
* mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
* (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
* (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
*
* The last mul.f does not have (ss) set, presumably because the
* (ss) on the previous instruction does the job.
*
* The blob driver also seems to set it on WAR hazards, although
* not really clear if this is needed or just blob compiler being
* sloppy. So far I haven't found a case where removing the (ss)
* causes problems for WAR hazard, but I could just be getting
* lucky:
*
* rcp r1.y, r3.y
* (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
*
*/
IR3_INSTR_SS = 0x002,
/* (jp) flag is set on jump targets:
*/
IR3_INSTR_JP = 0x004,
IR3_INSTR_UL = 0x008,
IR3_INSTR_3D = 0x010,
IR3_INSTR_A = 0x020,
IR3_INSTR_O = 0x040,
IR3_INSTR_P = 0x080,
IR3_INSTR_S = 0x100,
IR3_INSTR_S2EN = 0x200,
IR3_INSTR_G = 0x400,
IR3_INSTR_SAT = 0x800,
/* (cat5/cat6) Bindless */
IR3_INSTR_B = 0x1000,
/* (cat5-only) Get some parts of the encoding from a1.x */
IR3_INSTR_A1EN = 0x2000,
/* meta-flags, for intermediate stages of IR, ie.
* before register assignment is done:
*/
IR3_INSTR_MARK = 0x4000,
IR3_INSTR_UNUSED= 0x8000,
} flags;
uint8_t repeat;
uint8_t nop;
#ifdef DEBUG
unsigned regs_max;
#endif
unsigned regs_count;
struct ir3_register **regs;
union {
struct {
char inv;
char comp;
int immed;
struct ir3_block *target;
} cat0;
struct {
type_t src_type, dst_type;
} cat1;
struct {
enum {
IR3_COND_LT = 0,
IR3_COND_LE = 1,
IR3_COND_GT = 2,
IR3_COND_GE = 3,
IR3_COND_EQ = 4,
IR3_COND_NE = 5,
} condition;
} cat2;
struct {
unsigned samp, tex;
unsigned tex_base : 3;
type_t type;
} cat5;
struct {
type_t type;
int src_offset;
int dst_offset;
int iim_val : 3; /* for ldgb/stgb, # of components */
unsigned d : 3; /* for ldc, component offset */
bool typed : 1;
unsigned base : 3;
} cat6;
struct {
unsigned w : 1; /* write */
unsigned r : 1; /* read */
unsigned l : 1; /* local */
unsigned g : 1; /* global */
} cat7;
/* for meta-instructions, just used to hold extra data
* before instruction scheduling, etc
*/
struct {
int off; /* component/offset */
} split;
struct {
/* for output collects, this maps back to the entry in the
* ir3_shader_variant::outputs table.
*/
int outidx;
} collect;
struct {
unsigned samp, tex;
unsigned input_offset;
unsigned samp_base : 3;
unsigned tex_base : 3;
} prefetch;
struct {
/* maps back to entry in ir3_shader_variant::inputs table: */
int inidx;
/* for sysvals, identifies the sysval type. Mostly so we can
* identify the special cases where a sysval should not be DCE'd
* (currently, just pre-fs texture fetch)
*/
gl_system_value sysval;
} input;
};
/* When we get to the RA stage, we need instruction's position/name: */
uint16_t ip;
uint16_t name;
/* used for per-pass extra instruction data.
*
* TODO we should remove the per-pass data like this and 'use_count'
* and do something similar to what RA does w/ ir3_ra_instr_data..
* ie. use the ir3_count_instructions pass, and then use instr->ip
* to index into a table of pass-private data.
*/
void *data;
/**
* Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use()
*/
struct set *uses;
int sun; /* SethiUllman number, used by sched */
int use_count; /* currently just updated/used by cp */
/* Used during CP and RA stages. For collect and shader inputs/
* outputs where we need a sequence of consecutive registers,
* keep track of each src instructions left (ie 'n-1') and right
* (ie 'n+1') neighbor. The front-end must insert enough mov's
* to ensure that each instruction has at most one left and at
* most one right neighbor. During the copy-propagation pass,
* we only remove mov's when we can preserve this constraint.
* And during the RA stage, we use the neighbor information to
* allocate a block of registers in one shot.
*
* TODO: maybe just add something like:
* struct ir3_instruction_ref {
* struct ir3_instruction *instr;
* unsigned cnt;
* }
*
* Or can we get away without the refcnt stuff? It seems like
* it should be overkill.. the problem is if, potentially after
* already eliminating some mov's, if you have a single mov that
* needs to be grouped with it's neighbors in two different
* places (ex. shader output and a collect).
*/
struct {
struct ir3_instruction *left, *right;
uint16_t left_cnt, right_cnt;
} cp;
/* an instruction can reference at most one address register amongst
* it's src/dst registers. Beyond that, you need to insert mov's.
*
* NOTE: do not write this directly, use ir3_instr_set_address()
*/
struct ir3_instruction *address;
/* Tracking for additional dependent instructions. Used to handle
* barriers, WAR hazards for arrays/SSBOs/etc.
*/
DECLARE_ARRAY(struct ir3_instruction *, deps);
/*
* From PoV of instruction scheduling, not execution (ie. ignores global/
* local distinction):
* shared image atomic SSBO everything
* barrier()/ - R/W R/W R/W R/W X
* groupMemoryBarrier()
* memoryBarrier() - R/W R/W
* (but only images declared coherent?)
* memoryBarrierAtomic() - R/W
* memoryBarrierBuffer() - R/W
* memoryBarrierImage() - R/W
* memoryBarrierShared() - R/W
*
* TODO I think for SSBO/image/shared, in cases where we can determine
* which variable is accessed, we don't need to care about accesses to
* different variables (unless declared coherent??)
*/
enum {
IR3_BARRIER_EVERYTHING = 1 << 0,
IR3_BARRIER_SHARED_R = 1 << 1,
IR3_BARRIER_SHARED_W = 1 << 2,
IR3_BARRIER_IMAGE_R = 1 << 3,
IR3_BARRIER_IMAGE_W = 1 << 4,
IR3_BARRIER_BUFFER_R = 1 << 5,
IR3_BARRIER_BUFFER_W = 1 << 6,
IR3_BARRIER_ARRAY_R = 1 << 7,
IR3_BARRIER_ARRAY_W = 1 << 8,
} barrier_class, barrier_conflict;
/* Entry in ir3_block's instruction list: */
struct list_head node;
#ifdef DEBUG
uint32_t serialno;
#endif
// TODO only computerator/assembler:
int line;
};
static inline struct ir3_instruction *
ir3_neighbor_first(struct ir3_instruction *instr)
{
int cnt = 0;
while (instr->cp.left) {
instr = instr->cp.left;
if (++cnt > 0xffff) {
debug_assert(0);
break;
}
}
return instr;
}
static inline int ir3_neighbor_count(struct ir3_instruction *instr)
{
int num = 1;
debug_assert(!instr->cp.left);
while (instr->cp.right) {
num++;
instr = instr->cp.right;
if (num > 0xffff) {
debug_assert(0);
break;
}
}
return num;
}
struct ir3 {
struct ir3_compiler *compiler;
gl_shader_stage type;
DECLARE_ARRAY(struct ir3_instruction *, inputs);
DECLARE_ARRAY(struct ir3_instruction *, outputs);
/* Track bary.f (and ldlv) instructions.. this is needed in
* scheduling to ensure that all varying fetches happen before
* any potential kill instructions. The hw gets grumpy if all
* threads in a group are killed before the last bary.f gets
* a chance to signal end of input (ei).
*/
DECLARE_ARRAY(struct ir3_instruction *, baryfs);
/* Track all indirect instructions (read and write). To avoid
* deadlock scenario where an address register gets scheduled,
* but other dependent src instructions cannot be scheduled due
* to dependency on a *different* address register value, the
* scheduler needs to ensure that all dependencies other than
* the instruction other than the address register are scheduled
* before the one that writes the address register. Having a
* convenient list of instructions that reference some address
* register simplifies this.
*/
DECLARE_ARRAY(struct ir3_instruction *, a0_users);
/* same for a1.x: */
DECLARE_ARRAY(struct ir3_instruction *, a1_users);
/* and same for instructions that consume predicate register: */
DECLARE_ARRAY(struct ir3_instruction *, predicates);
/* Track texture sample instructions which need texture state
* patched in (for astc-srgb workaround):
*/
DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
/* List of blocks: */
struct list_head block_list;
/* List of ir3_array's: */
struct list_head array_list;
unsigned max_sun; /* max SethiUllman number */
#ifdef DEBUG
unsigned block_count, instr_count;
#endif
};
struct ir3_array {
struct list_head node;
unsigned length;
unsigned id;
struct nir_register *r;
/* To avoid array write's from getting DCE'd, keep track of the
* most recent write. Any array access depends on the most
* recent write. This way, nothing depends on writes after the
* last read. But all the writes that happen before that have
* something depending on them
*/
struct ir3_instruction *last_write;
/* extra stuff used in RA pass: */
unsigned base; /* base vreg name */
unsigned reg; /* base physical reg */
uint16_t start_ip, end_ip;
/* Indicates if half-precision */
bool half;
};
struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
struct ir3_block {
struct list_head node;
struct ir3 *shader;
const struct nir_block *nblock;
struct list_head instr_list; /* list of ir3_instruction */
/* each block has either one or two successors.. in case of
* two successors, 'condition' decides which one to follow.
* A block preceding an if/else has two successors.
*/
struct ir3_instruction *condition;
struct ir3_block *successors[2];
struct set *predecessors; /* set of ir3_block */
uint16_t start_ip, end_ip;
/* Track instructions which do not write a register but other-
* wise must not be discarded (such as kill, stg, etc)
*/
DECLARE_ARRAY(struct ir3_instruction *, keeps);
/* used for per-pass extra block data. Mainly used right
* now in RA step to track livein/liveout.
*/
void *data;
#ifdef DEBUG
uint32_t serialno;
#endif
};
static inline uint32_t
block_id(struct ir3_block *block)
{
#ifdef DEBUG
return block->serialno;
#else
return (uint32_t)(unsigned long)block;
#endif
}
struct ir3 * ir3_create(struct ir3_compiler *compiler, gl_shader_stage type);
void ir3_destroy(struct ir3 *shader);
void * ir3_assemble(struct ir3 *shader,
struct ir3_info *info, uint32_t gpu_id);
void * ir3_alloc(struct ir3 *shader, int sz);
struct ir3_block * ir3_block_create(struct ir3 *shader);
struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
opc_t opc, int nreg);
struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
const char *ir3_instr_name(struct ir3_instruction *instr);
struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
int num, int flags);
struct ir3_register * ir3_reg_clone(struct ir3 *shader,
struct ir3_register *reg);
void ir3_instr_set_address(struct ir3_instruction *instr,
struct ir3_instruction *addr);
static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
{
if (instr->flags & IR3_INSTR_MARK)
return true; /* already visited */
instr->flags |= IR3_INSTR_MARK;
return false;
}
void ir3_block_clear_mark(struct ir3_block *block);
void ir3_clear_mark(struct ir3 *shader);
unsigned ir3_count_instructions(struct ir3 *ir);
unsigned ir3_count_instructions_ra(struct ir3 *ir);
void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps);
//#include "util/set.h"
#define foreach_ssa_use(__use, __instr) \
for (struct ir3_instruction *__use = (void *)~0; \
__use && (__instr)->uses; __use = NULL) \
set_foreach ((__instr)->uses, __entry) \
if ((__use = (void *)__entry->key))
#define MAX_ARRAYS 16
/* comp:
* 0 - x
* 1 - y
* 2 - z
* 3 - w
*/
static inline uint32_t regid(int num, int comp)
{
return (num << 2) | (comp & 0x3);
}
static inline uint32_t reg_num(struct ir3_register *reg)
{
return reg->num >> 2;
}
static inline uint32_t reg_comp(struct ir3_register *reg)
{
return reg->num & 0x3;
}
#define INVALID_REG regid(63, 0)
#define VALIDREG(r) ((r) != INVALID_REG)
#define CONDREG(r, val) COND(VALIDREG(r), (val))
static inline bool is_flow(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 0);
}
static inline bool is_kill(struct ir3_instruction *instr)
{
return instr->opc == OPC_KILL;
}
static inline bool is_nop(struct ir3_instruction *instr)
{
return instr->opc == OPC_NOP;
}
static inline bool is_same_type_reg(struct ir3_register *reg1,
struct ir3_register *reg2)
{
unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
if (type_reg1 ^ type_reg2)
return false;
else
return true;
}
/* Is it a non-transformative (ie. not type changing) mov? This can
* also include absneg.s/absneg.f, which for the most part can be
* treated as a mov (single src argument).
*/
static inline bool is_same_type_mov(struct ir3_instruction *instr)
{
struct ir3_register *dst;
switch (instr->opc) {
case OPC_MOV:
if (instr->cat1.src_type != instr->cat1.dst_type)
return false;
/* If the type of dest reg and src reg are different,
* it shouldn't be considered as same type mov
*/
if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
return false;
break;
case OPC_ABSNEG_F:
case OPC_ABSNEG_S:
if (instr->flags & IR3_INSTR_SAT)
return false;
/* If the type of dest reg and src reg are different,
* it shouldn't be considered as same type mov
*/
if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
return false;
break;
default:
return false;
}
dst = instr->regs[0];
/* mov's that write to a0 or p0.x are special: */
if (dst->num == regid(REG_P0, 0))
return false;
if (reg_num(dst) == REG_A0)
return false;
if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
return false;
return true;
}
/* A move from const, which changes size but not type, can also be
* folded into dest instruction in some cases.
*/
static inline bool is_const_mov(struct ir3_instruction *instr)
{
if (instr->opc != OPC_MOV)
return false;
if (!(instr->regs[1]->flags & IR3_REG_CONST))
return false;
type_t src_type = instr->cat1.src_type;
type_t dst_type = instr->cat1.dst_type;
return (type_float(src_type) && type_float(dst_type)) ||
(type_uint(src_type) && type_uint(dst_type)) ||
(type_sint(src_type) && type_sint(dst_type));
}
static inline bool is_alu(struct ir3_instruction *instr)
{
return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
}
static inline bool is_sfu(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 4);
}
static inline bool is_tex(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 5);
}
static inline bool is_tex_or_prefetch(struct ir3_instruction *instr)
{
return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH);
}
static inline bool is_mem(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 6);
}
static inline bool is_barrier(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 7);
}
static inline bool
is_half(struct ir3_instruction *instr)
{
return !!(instr->regs[0]->flags & IR3_REG_HALF);
}
static inline bool
is_high(struct ir3_instruction *instr)
{
return !!(instr->regs[0]->flags & IR3_REG_HIGH);
}
static inline bool
is_store(struct ir3_instruction *instr)
{
/* these instructions, the "destination" register is
* actually a source, the address to store to.
*/
switch (instr->opc) {
case OPC_STG:
case OPC_STGB:
case OPC_STIB:
case OPC_STP:
case OPC_STL:
case OPC_STLW:
case OPC_L2G:
case OPC_G2L:
return true;
default:
return false;
}
}
static inline bool is_load(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_LDG:
case OPC_LDGB:
case OPC_LDIB:
case OPC_LDL:
case OPC_LDP:
case OPC_L2G:
case OPC_LDLW:
case OPC_LDC:
case OPC_LDLV:
/* probably some others too.. */
return true;
default:
return false;
}
}
static inline bool is_input(struct ir3_instruction *instr)
{
/* in some cases, ldlv is used to fetch varying without
* interpolation.. fortunately inloc is the first src
* register in either case
*/
switch (instr->opc) {
case OPC_LDLV:
case OPC_BARY_F:
return true;
default:
return false;
}
}
static inline bool is_bool(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_CMPS_F:
case OPC_CMPS_S:
case OPC_CMPS_U:
return true;
default:
return false;
}
}
static inline bool is_meta(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == -1);
}
static inline unsigned dest_regs(struct ir3_instruction *instr)
{
if ((instr->regs_count == 0) || is_store(instr) || is_flow(instr))
return 0;
return util_last_bit(instr->regs[0]->wrmask);
}
static inline bool
writes_gpr(struct ir3_instruction *instr)
{
if (dest_regs(instr) == 0)
return false;
/* is dest a normal temp register: */
struct ir3_register *reg = instr->regs[0];
debug_assert(!(reg->flags & (IR3_REG_CONST | IR3_REG_IMMED)));
if ((reg_num(reg) == REG_A0) ||
(reg->num == regid(REG_P0, 0)))
return false;
return true;
}
static inline bool writes_addr0(struct ir3_instruction *instr)
{
if (instr->regs_count > 0) {
struct ir3_register *dst = instr->regs[0];
return dst->num == regid(REG_A0, 0);
}
return false;
}
static inline bool writes_addr1(struct ir3_instruction *instr)
{
if (instr->regs_count > 0) {
struct ir3_register *dst = instr->regs[0];
return dst->num == regid(REG_A0, 1);
}
return false;
}
static inline bool writes_pred(struct ir3_instruction *instr)
{
if (instr->regs_count > 0) {
struct ir3_register *dst = instr->regs[0];
return reg_num(dst) == REG_P0;
}
return false;
}
/* returns defining instruction for reg */
/* TODO better name */
static inline struct ir3_instruction *ssa(struct ir3_register *reg)
{
if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
return reg->instr;
}
return NULL;
}
static inline bool conflicts(struct ir3_instruction *a,
struct ir3_instruction *b)
{
return (a && b) && (a != b);
}
static inline bool reg_gpr(struct ir3_register *r)
{
if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
return false;
if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
return false;
return true;
}
static inline type_t half_type(type_t type)
{
switch (type) {
case TYPE_F32: return TYPE_F16;
case TYPE_U32: return TYPE_U16;
case TYPE_S32: return TYPE_S16;
case TYPE_F16:
case TYPE_U16:
case TYPE_S16:
return type;
default:
assert(0);
return ~0;
}
}
/* some cat2 instructions (ie. those which are not float) can embed an
* immediate:
*/
static inline bool ir3_cat2_int(opc_t opc)
{
switch (opc) {
case OPC_ADD_U:
case OPC_ADD_S:
case OPC_SUB_U:
case OPC_SUB_S:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_MIN_U:
case OPC_MIN_S:
case OPC_MAX_U:
case OPC_MAX_S:
case OPC_CMPV_U:
case OPC_CMPV_S:
case OPC_MUL_U24:
case OPC_MUL_S24:
case OPC_MULL_U:
case OPC_CLZ_S:
case OPC_ABSNEG_S:
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_BFREV_B:
case OPC_CLZ_B:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MGEN_B:
case OPC_GETBIT_B:
case OPC_CBITS_B:
case OPC_BARY_F:
return true;
default:
return false;
}
}
/* map cat2 instruction to valid abs/neg flags: */
static inline unsigned ir3_cat2_absneg(opc_t opc)
{
switch (opc) {
case OPC_ADD_F:
case OPC_MIN_F:
case OPC_MAX_F:
case OPC_MUL_F:
case OPC_SIGN_F:
case OPC_CMPS_F:
case OPC_ABSNEG_F:
case OPC_CMPV_F:
case OPC_FLOOR_F:
case OPC_CEIL_F:
case OPC_RNDNE_F:
case OPC_RNDAZ_F:
case OPC_TRUNC_F:
case OPC_BARY_F:
return IR3_REG_FABS | IR3_REG_FNEG;
case OPC_ADD_U:
case OPC_ADD_S:
case OPC_SUB_U:
case OPC_SUB_S:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_MIN_U:
case OPC_MIN_S:
case OPC_MAX_U:
case OPC_MAX_S:
case OPC_CMPV_U:
case OPC_CMPV_S:
case OPC_MUL_U24:
case OPC_MUL_S24:
case OPC_MULL_U:
case OPC_CLZ_S:
return 0;
case OPC_ABSNEG_S:
return IR3_REG_SABS | IR3_REG_SNEG;
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_BFREV_B:
case OPC_CLZ_B:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MGEN_B:
case OPC_GETBIT_B:
case OPC_CBITS_B:
return IR3_REG_BNOT;
default:
return 0;
}
}
/* map cat3 instructions to valid abs/neg flags: */
static inline unsigned ir3_cat3_absneg(opc_t opc)
{
switch (opc) {
case OPC_MAD_F16:
case OPC_MAD_F32:
case OPC_SEL_F16:
case OPC_SEL_F32:
return IR3_REG_FNEG;
case OPC_MAD_U16:
case OPC_MADSH_U16:
case OPC_MAD_S16:
case OPC_MADSH_M16:
case OPC_MAD_U24:
case OPC_MAD_S24:
case OPC_SEL_S16:
case OPC_SEL_S32:
case OPC_SAD_S16:
case OPC_SAD_S32:
/* neg *may* work on 3rd src.. */
case OPC_SEL_B16:
case OPC_SEL_B32:
default:
return 0;
}
}
#define MASK(n) ((1 << (n)) - 1)
/* iterator for an instructions's sources (reg), also returns src #: */
#define foreach_src_n(__srcreg, __n, __instr) \
if ((__instr)->regs_count) \
for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
if ((__srcreg = (__instr)->regs[__n + 1]))
/* iterator for an instructions's sources (reg): */
#define foreach_src(__srcreg, __instr) \
foreach_src_n(__srcreg, __i, __instr)
static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
{
unsigned cnt = instr->regs_count + instr->deps_count;
if (instr->address)
cnt++;
return cnt;
}
static inline struct ir3_instruction **
__ssa_srcp_n(struct ir3_instruction *instr, unsigned n)
{
if (n == (instr->regs_count + instr->deps_count))
return &instr->address;
if (n >= instr->regs_count)
return &instr->deps[n - instr->regs_count];
if (ssa(instr->regs[n]))
return &instr->regs[n]->instr;
return NULL;
}
static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
{
if (n == (instr->regs_count + instr->deps_count))
return false;
if (n >= instr->regs_count)
return true;
return false;
}
#define foreach_ssa_srcp_n(__srcp, __n, __instr) \
for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \
for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
if ((__srcp = __ssa_srcp_n(__instr, __n)))
#define foreach_ssa_srcp(__srcp, __instr) \
foreach_ssa_srcp_n(__srcp, __i, __instr)
/* iterator for an instruction's SSA sources (instr), also returns src #: */
#define foreach_ssa_src_n(__srcinst, __n, __instr) \
foreach_ssa_srcp_n(__srcp, __n, __instr) \
if ((__srcinst = *__srcp))
/* iterator for an instruction's SSA sources (instr): */
#define foreach_ssa_src(__srcinst, __instr) \
foreach_ssa_src_n(__srcinst, __i, __instr)
/* iterators for shader inputs: */
#define foreach_input_n(__ininstr, __cnt, __ir) \
for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
if ((__ininstr = (__ir)->inputs[__cnt]))
#define foreach_input(__ininstr, __ir) \
foreach_input_n(__ininstr, __i, __ir)
/* iterators for shader outputs: */
#define foreach_output_n(__outinstr, __cnt, __ir) \
for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
if ((__outinstr = (__ir)->outputs[__cnt]))
#define foreach_output(__outinstr, __ir) \
foreach_output_n(__outinstr, __i, __ir)
/* iterators for instructions: */
#define foreach_instr(__instr, __list) \
list_for_each_entry(struct ir3_instruction, __instr, __list, node)
#define foreach_instr_rev(__instr, __list) \
list_for_each_entry_rev(struct ir3_instruction, __instr, __list, node)
#define foreach_instr_safe(__instr, __list) \
list_for_each_entry_safe(struct ir3_instruction, __instr, __list, node)
/* iterators for blocks: */
#define foreach_block(__block, __list) \
list_for_each_entry(struct ir3_block, __block, __list, node)
#define foreach_block_safe(__block, __list) \
list_for_each_entry_safe(struct ir3_block, __block, __list, node)
#define foreach_block_rev(__block, __list) \
list_for_each_entry_rev(struct ir3_block, __block, __list, node)
/* iterators for arrays: */
#define foreach_array(__array, __list) \
list_for_each_entry(struct ir3_array, __array, __list, node)
/* Check if condition is true for any src instruction.
*/
static inline bool
check_src_cond(struct ir3_instruction *instr, bool (*cond)(struct ir3_instruction *))
{
struct ir3_register *reg;
/* Note that this is also used post-RA so skip the ssa iterator: */
foreach_src (reg, instr) {
struct ir3_instruction *src = reg->instr;
if (!src)
continue;
/* meta:split/collect aren't real instructions, the thing that
* we actually care about is *their* srcs
*/
if ((src->opc == OPC_META_SPLIT) || (src->opc == OPC_META_COLLECT)) {
if (check_src_cond(src, cond))
return true;
} else {
if (cond(src))
return true;
}
}
return false;
}
/* dump: */
void ir3_print(struct ir3 *ir);
void ir3_print_instr(struct ir3_instruction *instr);
/* delay calculation: */
int ir3_delayslots(struct ir3_instruction *assigner,
struct ir3_instruction *consumer, unsigned n, bool soft);
unsigned ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr,
bool soft, bool pred);
void ir3_remove_nops(struct ir3 *ir);
/* dead code elimination: */
struct ir3_shader_variant;
void ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so);
/* fp16 conversion folding */
void ir3_cf(struct ir3 *ir);
/* copy-propagate: */
void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
/* group neighbors and insert mov's to resolve conflicts: */
void ir3_group(struct ir3 *ir);
/* SethiUllman numbering: */
void ir3_sun(struct ir3 *ir);
/* scheduling: */
void ir3_sched_add_deps(struct ir3 *ir);
int ir3_sched(struct ir3 *ir);
struct ir3_context;
int ir3_postsched(struct ir3_context *ctx);
bool ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
/* register assignment: */
struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
/* legalize: */
void ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary);
static inline bool
ir3_has_latency_to_hide(struct ir3 *ir)
{
/* VS/GS/TCS/TESS co-exist with frag shader invocations, but we don't
* know the nature of the fragment shader. Just assume it will have
* latency to hide:
*/
if (ir->type != MESA_SHADER_FRAGMENT)
return true;
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
if (is_tex_or_prefetch(instr))
return true;
if (is_load(instr)) {
switch (instr->opc) {
case OPC_LDLV:
case OPC_LDL:
case OPC_LDLW:
break;
default:
return true;
}
}
}
}
return false;
}
/* ************************************************************************* */
/* instruction helpers */
/* creates SSA src of correct type (ie. half vs full precision) */
static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
struct ir3_instruction *src, unsigned flags)
{
struct ir3_register *reg;
if (src->regs[0]->flags & IR3_REG_HALF)
flags |= IR3_REG_HALF;
reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
reg->instr = src;
reg->wrmask = src->regs[0]->wrmask;
return reg;
}
static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
{
struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
reg->flags |= IR3_REG_SSA;
return reg;
}
static inline struct ir3_instruction *
create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
{
struct ir3_instruction *mov;
unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
mov = ir3_instr_create(block, OPC_MOV);
mov->cat1.src_type = type;
mov->cat1.dst_type = type;
__ssa_dst(mov)->flags |= flags;
ir3_reg_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val;
return mov;
}
static inline struct ir3_instruction *
create_immed(struct ir3_block *block, uint32_t val)
{
return create_immed_typed(block, val, TYPE_U32);
}
static inline struct ir3_instruction *
create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
{
struct ir3_instruction *mov;
unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
mov = ir3_instr_create(block, OPC_MOV);
mov->cat1.src_type = type;
mov->cat1.dst_type = type;
__ssa_dst(mov)->flags |= flags;
ir3_reg_create(mov, n, IR3_REG_CONST | flags);
return mov;
}
static inline struct ir3_instruction *
create_uniform(struct ir3_block *block, unsigned n)
{
return create_uniform_typed(block, n, TYPE_F32);
}
static inline struct ir3_instruction *
create_uniform_indirect(struct ir3_block *block, int n,
struct ir3_instruction *address)
{
struct ir3_instruction *mov;
mov = ir3_instr_create(block, OPC_MOV);
mov->cat1.src_type = TYPE_U32;
mov->cat1.dst_type = TYPE_U32;
__ssa_dst(mov);
ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
ir3_instr_set_address(mov, address);
return mov;
}
static inline struct ir3_instruction *
ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
__ssa_dst(instr);
if (src->regs[0]->flags & IR3_REG_ARRAY) {
struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
src_reg->array = src->regs[0]->array;
} else {
__ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
}
debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
instr->cat1.src_type = type;
instr->cat1.dst_type = type;
return instr;
}
static inline struct ir3_instruction *
ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
type_t src_type, type_t dst_type)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
__ssa_dst(instr)->flags |= dst_flags;
__ssa_src(instr, src, 0);
instr->cat1.src_type = src_type;
instr->cat1.dst_type = dst_type;
debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
return instr;
}
static inline struct ir3_instruction *
ir3_NOP(struct ir3_block *block)
{
return ir3_instr_create(block, OPC_NOP);
}
#define IR3_INSTR_0 0
#define __INSTR0(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc); \
instr->flags |= flag; \
return instr; \
}
#define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR0(name) __INSTR0(0, name, OPC_##name)
#define __INSTR1(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
instr->flags |= flag; \
return instr; \
}
#define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR1(name) __INSTR1(0, name, OPC_##name)
#define __INSTR2(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
instr->flags |= flag; \
return instr; \
}
#define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR2(name) __INSTR2(0, name, OPC_##name)
#define __INSTR3(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, \
struct ir3_instruction *c, unsigned cflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create2(block, opc, 4); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
__ssa_src(instr, c, cflags); \
instr->flags |= flag; \
return instr; \
}
#define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR3(name) __INSTR3(0, name, OPC_##name)
#define __INSTR4(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, \
struct ir3_instruction *c, unsigned cflags, \
struct ir3_instruction *d, unsigned dflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create2(block, opc, 5); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
__ssa_src(instr, c, cflags); \
__ssa_src(instr, d, dflags); \
instr->flags |= flag; \
return instr; \
}
#define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR4(name) __INSTR4(0, name, OPC_##name)
/* cat0 instructions: */
INSTR1(B)
INSTR0(JUMP)
INSTR1(KILL)
INSTR0(END)
INSTR0(CHSH)
INSTR0(CHMASK)
INSTR1(PREDT)
INSTR0(PREDF)
INSTR0(PREDE)
/* cat2 instructions, most 2 src but some 1 src: */
INSTR2(ADD_F)
INSTR2(MIN_F)
INSTR2(MAX_F)
INSTR2(MUL_F)
INSTR1(SIGN_F)
INSTR2(CMPS_F)
INSTR1(ABSNEG_F)
INSTR2(CMPV_F)
INSTR1(FLOOR_F)
INSTR1(CEIL_F)
INSTR1(RNDNE_F)
INSTR1(RNDAZ_F)
INSTR1(TRUNC_F)
INSTR2(ADD_U)
INSTR2(ADD_S)
INSTR2(SUB_U)
INSTR2(SUB_S)
INSTR2(CMPS_U)
INSTR2(CMPS_S)
INSTR2(MIN_U)
INSTR2(MIN_S)
INSTR2(MAX_U)
INSTR2(MAX_S)
INSTR1(ABSNEG_S)
INSTR2(AND_B)
INSTR2(OR_B)
INSTR1(NOT_B)
INSTR2(XOR_B)
INSTR2(CMPV_U)
INSTR2(CMPV_S)
INSTR2(MUL_U24)
INSTR2(MUL_S24)
INSTR2(MULL_U)
INSTR1(BFREV_B)
INSTR1(CLZ_S)
INSTR1(CLZ_B)
INSTR2(SHL_B)
INSTR2(SHR_B)
INSTR2(ASHR_B)
INSTR2(BARY_F)
INSTR2(MGEN_B)
INSTR2(GETBIT_B)
INSTR1(SETRM)
INSTR1(CBITS_B)
INSTR2(SHB)
INSTR2(MSAD)
/* cat3 instructions: */
INSTR3(MAD_U16)
INSTR3(MADSH_U16)
INSTR3(MAD_S16)
INSTR3(MADSH_M16)
INSTR3(MAD_U24)
INSTR3(MAD_S24)
INSTR3(MAD_F16)
INSTR3(MAD_F32)
/* NOTE: SEL_B32 checks for zero vs nonzero */
INSTR3(SEL_B16)
INSTR3(SEL_B32)
INSTR3(SEL_S16)
INSTR3(SEL_S32)
INSTR3(SEL_F16)
INSTR3(SEL_F32)
INSTR3(SAD_S16)
INSTR3(SAD_S32)
/* cat4 instructions: */
INSTR1(RCP)
INSTR1(RSQ)
INSTR1(HRSQ)
INSTR1(LOG2)
INSTR1(HLOG2)
INSTR1(EXP2)
INSTR1(HEXP2)
INSTR1(SIN)
INSTR1(COS)
INSTR1(SQRT)
/* cat5 instructions: */
INSTR1(DSX)
INSTR1(DSXPP_1)
INSTR1(DSY)
INSTR1(DSYPP_1)
INSTR1F(3D, DSX)
INSTR1F(3D, DSY)
INSTR1(RGETPOS)
static inline struct ir3_instruction *
ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
struct ir3_instruction *src0, struct ir3_instruction *src1)
{
struct ir3_instruction *sam;
sam = ir3_instr_create(block, opc);
sam->flags |= flags;
__ssa_dst(sam)->wrmask = wrmask;
if (flags & IR3_INSTR_S2EN) {
__ssa_src(sam, samp_tex, IR3_REG_HALF);
}
if (src0) {
__ssa_src(sam, src0, 0);
}
if (src1) {
__ssa_src(sam, src1, 0);
}
sam->cat5.type = type;
return sam;
}
/* cat6 instructions: */
INSTR2(LDLV)
INSTR3(LDG)
INSTR3(LDL)
INSTR3(LDLW)
INSTR3(STG)
INSTR3(STL)
INSTR3(STLW)
INSTR1(RESINFO)
INSTR1(RESFMT)
INSTR2(ATOMIC_ADD)
INSTR2(ATOMIC_SUB)
INSTR2(ATOMIC_XCHG)
INSTR2(ATOMIC_INC)
INSTR2(ATOMIC_DEC)
INSTR2(ATOMIC_CMPXCHG)
INSTR2(ATOMIC_MIN)
INSTR2(ATOMIC_MAX)
INSTR2(ATOMIC_AND)
INSTR2(ATOMIC_OR)
INSTR2(ATOMIC_XOR)
INSTR2(LDC)
#if GPU >= 600
INSTR3(STIB);
INSTR2(LDIB);
INSTR3F(G, ATOMIC_ADD)
INSTR3F(G, ATOMIC_SUB)
INSTR3F(G, ATOMIC_XCHG)
INSTR3F(G, ATOMIC_INC)
INSTR3F(G, ATOMIC_DEC)
INSTR3F(G, ATOMIC_CMPXCHG)
INSTR3F(G, ATOMIC_MIN)
INSTR3F(G, ATOMIC_MAX)
INSTR3F(G, ATOMIC_AND)
INSTR3F(G, ATOMIC_OR)
INSTR3F(G, ATOMIC_XOR)
#elif GPU >= 400
INSTR3(LDGB)
INSTR4(STGB)
INSTR4(STIB)
INSTR4F(G, ATOMIC_ADD)
INSTR4F(G, ATOMIC_SUB)
INSTR4F(G, ATOMIC_XCHG)
INSTR4F(G, ATOMIC_INC)
INSTR4F(G, ATOMIC_DEC)
INSTR4F(G, ATOMIC_CMPXCHG)
INSTR4F(G, ATOMIC_MIN)
INSTR4F(G, ATOMIC_MAX)
INSTR4F(G, ATOMIC_AND)
INSTR4F(G, ATOMIC_OR)
INSTR4F(G, ATOMIC_XOR)
#endif
INSTR4F(G, STG)
/* cat7 instructions: */
INSTR0(BAR)
INSTR0(FENCE)
/* meta instructions: */
INSTR0(META_TEX_PREFETCH);
/* ************************************************************************* */
/* split this out or find some helper to use.. like main/bitset.h.. */
#include <string.h>
#include "util/bitset.h"
#define MAX_REG 256
typedef BITSET_DECLARE(regmask_t, 2 * MAX_REG);
static inline bool
__regmask_get(regmask_t *regmask, struct ir3_register *reg, unsigned n)
{
if (reg->merged) {
/* a6xx+ case, with merged register file, we track things in terms
* of half-precision registers, with a full precisions register
* using two half-precision slots:
*/
if (reg->flags & IR3_REG_HALF) {
return BITSET_TEST(*regmask, n);
} else {
n *= 2;
return BITSET_TEST(*regmask, n) || BITSET_TEST(*regmask, n+1);
}
} else {
/* pre a6xx case, with separate register file for half and full
* precision:
*/
if (reg->flags & IR3_REG_HALF)
n += MAX_REG;
return BITSET_TEST(*regmask, n);
}
}
static inline void
__regmask_set(regmask_t *regmask, struct ir3_register *reg, unsigned n)
{
if (reg->merged) {
/* a6xx+ case, with merged register file, we track things in terms
* of half-precision registers, with a full precisions register
* using two half-precision slots:
*/
if (reg->flags & IR3_REG_HALF) {
BITSET_SET(*regmask, n);
} else {
n *= 2;
BITSET_SET(*regmask, n);
BITSET_SET(*regmask, n+1);
}
} else {
/* pre a6xx case, with separate register file for half and full
* precision:
*/
if (reg->flags & IR3_REG_HALF)
n += MAX_REG;
BITSET_SET(*regmask, n);
}
}
static inline void regmask_init(regmask_t *regmask)
{
memset(regmask, 0, sizeof(*regmask));
}
static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
{
if (reg->flags & IR3_REG_RELATIV) {
for (unsigned i = 0; i < reg->size; i++)
__regmask_set(regmask, reg, reg->array.offset + i);
} else {
for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
if (mask & 1)
__regmask_set(regmask, reg, n);
}
}
static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(*dst); i++)
(*dst)[i] = (*a)[i] | (*b)[i];
}
static inline bool regmask_get(regmask_t *regmask,
struct ir3_register *reg)
{
if (reg->flags & IR3_REG_RELATIV) {
for (unsigned i = 0; i < reg->size; i++)
if (__regmask_get(regmask, reg, reg->array.offset + i))
return true;
} else {
for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
if (mask & 1)
if (__regmask_get(regmask, reg, n))
return true;
}
return false;
}
/* ************************************************************************* */
#endif /* IR3_H_ */