tinygrad/test/test_lazybuffer.py

118 lines
3.9 KiB
Python

#!/usr/bin/env python
import numpy as np
import unittest
from tinygrad import Tensor, Device, dtypes
from tinygrad.lazy import LazyBuffer, ReduceOps, LoadOps
from tinygrad.engine.schedule import create_schedule
class TestLazyBuffer(unittest.TestCase):
def test_fromcpu_shape_tracker(self):
def helper(a: np.ndarray):
print(a.shape, a.strides, a.flags.c_contiguous)
b = Tensor(a).lazydata
#assert b.st.contiguous == a.flags.c_contiguous
assert b.st.shape == a.shape
np.testing.assert_equal(a, Tensor(b).numpy())
for ndims in range(1, 4):
a = np.random.randn(*(4,)*ndims).astype(np.float32)
for stride in [-2, 1, 2]:
for start in [0, 1]:
helper(a[(slice(start, None, stride),)*ndims])
def test_shuffle_pad_ops_cmpeq(self):
y = Tensor([1]).cat(Tensor([1]) == 0).numpy()
z = Tensor([1, 0]).numpy()
np.testing.assert_allclose(y, z)
def test_shuffle_pad_ops_div(self):
y = Tensor([1]).cat(Tensor([1]).div(Tensor([2.0]))).numpy()
z = Tensor([1, 0.5]).numpy()
np.testing.assert_allclose(y, z)
def test_shuffle_pad_ops_log(self):
y = Tensor([1]).cat(Tensor([1]).log()).numpy()
z = Tensor([1, 0]).numpy()
np.testing.assert_allclose(y, z)
def test_shuffle_pad_ops_exp(self):
y = Tensor([1]).cat(Tensor([1]).exp()).numpy()
z = Tensor([1, np.e]).numpy()
np.testing.assert_allclose(y, z)
def test_device_0_is_the_same_device(self):
a = Tensor([1, 2, 3], f"{Device.DEFAULT}")
b = Tensor([1, 2, 3], f"{Device.DEFAULT}:0")
assert a.device == b.device
def test_shrink_const_into_zero(self):
# regression test to make sure the shapetracker is preserved
a = Tensor.zeros(4,4,4).shrink((None, (0,0), None))
b = Tensor.zeros(4,1,4)
c = a.cat(b, dim=1)
np.testing.assert_allclose(c.numpy(), np.concatenate((a.numpy(), b.numpy()), axis=1))
def test_shrink_const_then_cast(self):
# regression test to make sure the shapetracker is preserved
a = Tensor.zeros(4,4,4).shrink((None, (0,0), None)).cast(dtypes.int32)
b = Tensor.zeros(4,1,4)
c = a.cat(b, dim=1)
np.testing.assert_allclose(c.numpy(), np.concatenate((a.numpy(), b.numpy()), axis=1))
def test_const_dtype(self):
lb: LazyBuffer = Tensor([1], dtype=dtypes.int).lazydata
assert lb.const(1).base.arg == 1
assert type(lb.const(1).base.arg) is int
lb: LazyBuffer = Tensor([1], dtype=dtypes.float).lazydata
assert lb.const(1).base.arg == 1.0
assert type(lb.const(1).base.arg) is float
class TestReduceOp(unittest.TestCase):
def test_no_split_reduce_kernel(self):
a = Tensor.rand(4, 4).realize()
a = a.sum()
sched = create_schedule([a.lazydata])
assert len(sched) == 1
assert sched[0].ast[0].src[0].op is ReduceOps.SUM
def test_split_reduce_kernel_dim0(self):
a = Tensor.rand(256, 255).realize()
a = a.sum()
sched = create_schedule([a.lazydata])
assert len(sched) == 2
for s in sched:
assert s.ast[0].src[0].op is ReduceOps.SUM
def test_split_reduce_kernel_dim1(self):
a = Tensor.rand(255, 256).realize()
a = a.sum()
sched = create_schedule([a.lazydata])
assert len(sched) == 2
for s in sched:
assert s.ast[0].src[0].op is ReduceOps.SUM
class TestView(unittest.TestCase):
def test_all_masked_out(self):
# start with non CONST LoadOps
a = Tensor.rand(10, 10)
assert a.lazydata.base.op is not LoadOps.CONST
# all masked out, degrades to const 0
b = a.pad(((0, 10), None))[10:]
assert b.shape == (10, 10)
assert b.lazydata.base.op is LoadOps.CONST and b.lazydata.base.arg == 0
# mask out dim = 1 works too
b = a.pad((None, (0, 10)))[:, 10:]
assert b.shape == (10, 10)
assert b.lazydata.base.op is LoadOps.CONST and b.lazydata.base.arg == 0
# partial masked out does not degrade into CONST
b = a.pad(((0, 5), None))[5:]
assert b.shape == (10, 10)
assert b.lazydata.base.op is not LoadOps.CONST
if __name__ == "__main__":
unittest.main()