tinygrad/test/test_nn.py

41 lines
985 B
Python

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad.nn import *
import torch
class TestNN(unittest.TestCase):
def test_batchnorm2d(self):
sz = 4
# create in tinygrad
bn = BatchNorm2D(sz, eps=1e-5)
bn.weight = Tensor.randn(sz)
bn.bias = Tensor.randn(sz)
bn.running_mean = Tensor.randn(sz)
bn.running_var = Tensor.randn(sz)
bn.running_var.data[bn.running_var.data < 0] = 0
# create in torch
tbn = torch.nn.BatchNorm2d(sz).eval()
tbn.weight[:] = torch.tensor(bn.weight.data)
tbn.bias[:] = torch.tensor(bn.bias.data)
tbn.running_mean[:] = torch.tensor(bn.running_mean.data)
tbn.running_var[:] = torch.tensor(bn.running_var.data)
# trial
inn = Tensor.randn(2, sz, 3, 3)
# in tinygrad
outt = bn(inn)
# in torch
toutt = tbn(torch.tensor(inn.data))
# close
np.testing.assert_allclose(outt.data, toutt.detach().numpy(), rtol=1e-5)
if __name__ == '__main__':
unittest.main()