tinygrad/extra/training.py

63 lines
2.2 KiB
Python

import os
import numpy as np
from tqdm import trange
from extra.utils import get_parameters
from tinygrad.tensor import Tensor, Device
def sparse_categorical_crossentropy(out, Y):
num_classes = out.shape[-1]
YY = Y.flatten()
y = np.zeros((YY.shape[0], num_classes), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),YY] = -1.0*num_classes
y = y.reshape(list(Y.shape)+[num_classes])
y = Tensor(y)
return out.mul(y).mean()
def train(model, X_train, Y_train, optim, steps, BS=128, lossfn=sparse_categorical_crossentropy,
transform=lambda x: x, target_transform=lambda x: x, noloss=False):
Tensor.training = True
losses, accuracies = [], []
for i in (t := trange(steps, disable=os.getenv('CI') is not None)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(transform(X_train[samp]), requires_grad=False)
y = target_transform(Y_train[samp])
# network
out = model.forward(x)
loss = lossfn(out, y)
optim.zero_grad()
loss.backward()
if noloss: del loss
optim.step()
# printing
if not noloss:
cat = np.argmax(out.cpu().data, axis=-1)
accuracy = (cat == y).mean()
loss = loss.detach().cpu().data
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
def evaluate(model, X_test, Y_test, num_classes=None, BS=128, return_predict=False, transform=lambda x: x,
target_transform=lambda y: y):
Tensor.training = False
def numpy_eval(Y_test, num_classes):
Y_test_preds_out = np.zeros(list(Y_test.shape)+[num_classes])
for i in trange((len(Y_test)-1)//BS+1, disable=os.getenv('CI') is not None):
x = Tensor(transform(X_test[i*BS:(i+1)*BS]))
Y_test_preds_out[i*BS:(i+1)*BS] = model.forward(x).cpu().data
Y_test_preds = np.argmax(Y_test_preds_out, axis=-1)
Y_test = target_transform(Y_test)
return (Y_test == Y_test_preds).mean(), Y_test_preds
if num_classes is None: num_classes = Y_test.max().astype(int)+1
acc, Y_test_pred = numpy_eval(Y_test, num_classes)
print("test set accuracy is %f" % acc)
return (acc, Y_test_pred) if return_predict else acc