tinygrad/test/test_transcendental.py

72 lines
3.1 KiB
Python

import unittest
from tinygrad import Tensor, Device, dtypes
from tinygrad.tensor import _to_np_dtype
from tinygrad.helpers import Context, getenv
from test.test_schedule import check_schedule
from test.test_dtype_alu import ht
from test.helpers import is_dtype_supported
import numpy as np
from hypothesis import given, settings, strategies as strat
settings.register_profile("my_profile", max_examples=200, deadline=None, derandomize=getenv("DERANDOMIZE_CI", False))
settings.load_profile("my_profile")
class TestTranscendentalMath(unittest.TestCase):
@unittest.skipUnless(is_dtype_supported(dtypes.float64, Device.DEFAULT), f"no float64 on {Device.DEFAULT}")
@unittest.skipIf(getenv("MOCKGPU") and Device.DEFAULT == "NV", "crashed")
@given(ht.float64, strat.sampled_from([(Tensor.exp, np.exp), (Tensor.log, np.log), (Tensor.sin, np.sin)]))
def test_float64(self, x, op):
if op[0] == Tensor.sin:
# TODO: reduction does not work # 536870912.125 # 2914593.01171875 # 134217728.03125 # 230581075.65625 # 139216373.71875
if abs(x) > 100_000_000: return
with Context(TRANSCENDENTAL=2):
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float64)).numpy(),
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float64))),
atol=3e-2, rtol=1e-5) # sin can have bigger atol for very big x
@unittest.skipIf(getenv("MOCKGPU") and Device.DEFAULT == "NV", "crashed")
@given(ht.float32, strat.sampled_from([(Tensor.exp, np.exp), (Tensor.log, np.log), (Tensor.sin, np.sin)]))
def test_float32(self, x, op):
with Context(TRANSCENDENTAL=2):
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float32)).numpy(),
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float32))),
atol=2e-5, rtol=1e-5)
@unittest.skipUnless(is_dtype_supported(dtypes.float16, Device.DEFAULT), f"no float16 on {Device.DEFAULT}")
@given(ht.float16, strat.sampled_from([(Tensor.exp, np.exp), (Tensor.log, np.log), (Tensor.sin, np.sin)]))
def test_float16(self, x, op):
with Context(TRANSCENDENTAL=2):
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float16)).numpy(),
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float16))),
atol=1e-2, rtol=5e-3) # exp can have bigger rtol
class TestTranscendentalSchedule(unittest.TestCase):
# w/ payne_hanek_reduction (fp32)
def test_transcendental_sin_fusion(self):
with Context(TRANSCENDENTAL=2):
a = Tensor.empty(10)
b = Tensor.empty(10)
c = a.sin() + b.sin()
c = c.sin()
check_schedule(c, 1)
def test_transcendental_log2_fusion(self):
with Context(TRANSCENDENTAL=2):
a = Tensor.empty(10)
b = Tensor.empty(10)
c = a.log2() + b.log2()
c = c.log2()
check_schedule(c, 1)
def test_transcendental_exp2_fusion(self):
with Context(TRANSCENDENTAL=2):
a = Tensor.empty(10)
b = Tensor.empty(10)
c = a.exp2() + b.exp2()
c = c.exp2()
check_schedule(c, 1)
if __name__ == '__main__':
unittest.main()