tinygrad/test/external/speed_compare_cuda_nv.py

69 lines
2.5 KiB
Python

from tinygrad import Device, dtypes
from tinygrad.helpers import getenv, colorize_float
from extra.optimization.helpers import load_worlds, ast_str_to_lin
from test.external.fuzz_linearizer import get_fuzz_rawbufs
from tinygrad.engine.search import bufs_from_lin
from tinygrad.engine.realize import CompiledRunner
from tinygrad.tensor import _to_np_dtype
import numpy as np
if __name__ == "__main__":
ast_strs = load_worlds(filter_reduce=False, filter_novariable=True)
cudev = Device["CUDA"]
nvdev = Device["NV"]
# NUM=112 python3 test/external/speed_compare_cuda_nv.py
single = getenv("NUM", -1)
if single != -1: ast_strs = ast_strs[single:single+1]
average_tm_cuda, average_tm_nv = 0, 0
for num,ast in enumerate(ast_strs):
# cuda compile
culin = ast_str_to_lin(ast, opts=cudev.renderer)
culin.hand_coded_optimizations()
has_bf16 = any(b.dtype == dtypes.bfloat16 for b in culin.membufs)
cuda_prg = CompiledRunner(culin.to_program())
cubufs = bufs_from_lin(culin)
test_cubufs = get_fuzz_rawbufs(culin) if not has_bf16 else cubufs
rdr = nvdev.renderer
rdr.device = "NV"
nvlin = ast_str_to_lin(ast, opts=rdr)
nvlin.hand_coded_optimizations()
nv_prg = CompiledRunner(nvlin.to_program())
nvbufs = bufs_from_lin(nvlin)
test_nvbufs = get_fuzz_rawbufs(nvlin) if not has_bf16 else nvbufs
if not has_bf16:
for i,rawbuf in enumerate(test_nvbufs): rawbuf.copyin(test_cubufs[i].as_buffer())
# warmup
tm_cuda, tm_nv, failed = [], [], False
try:
cuda_prg(test_cubufs, {}, wait=True)
for i in range(5): tm_cuda.append(cuda_prg(cubufs, {}, wait=True))
except RuntimeError:
print("CUDA FAILED")
tm_cuda = [1e9]
failed = True
try:
nv_prg(test_nvbufs, {}, wait=True)
for i in range(5): tm_nv.append(nv_prg(nvbufs, {}, wait=True))
except RuntimeError:
print("NV FAILED")
tm_nv = [1e9]
failed = True
if not failed and not has_bf16:
curesult = np.frombuffer(test_cubufs[0].as_buffer(), _to_np_dtype(test_cubufs[0].dtype))
nvresult = np.frombuffer(test_nvbufs[0].as_buffer(), _to_np_dtype(test_nvbufs[0].dtype))
np.testing.assert_allclose(curesult, nvresult, rtol=1e-2, atol=1e-2)
average_tm_cuda += min(tm_cuda)
average_tm_nv += min(tm_nv)
ratio = min(tm_nv)/min(tm_cuda)
print(f"{average_tm_nv/average_tm_cuda:5.2f}x -- {num:4d} {colorize_float(ratio)} {min(tm_nv)*1e6:7.2f} us", nvlin.name)
if ratio > 1.04: print(f"NV slower {ratio}", nvlin.ast, nvlin.applied_opts)