mirror of https://github.com/commaai/tinygrad.git
69 lines
2.5 KiB
Python
69 lines
2.5 KiB
Python
from tinygrad import Device, dtypes
|
|
from tinygrad.helpers import getenv, colorize_float
|
|
from extra.optimization.helpers import load_worlds, ast_str_to_lin
|
|
from test.external.fuzz_linearizer import get_fuzz_rawbufs
|
|
from tinygrad.engine.search import bufs_from_lin
|
|
from tinygrad.engine.realize import CompiledRunner
|
|
from tinygrad.tensor import _to_np_dtype
|
|
import numpy as np
|
|
|
|
if __name__ == "__main__":
|
|
ast_strs = load_worlds(filter_reduce=False, filter_novariable=True)
|
|
cudev = Device["CUDA"]
|
|
nvdev = Device["NV"]
|
|
|
|
# NUM=112 python3 test/external/speed_compare_cuda_nv.py
|
|
|
|
single = getenv("NUM", -1)
|
|
if single != -1: ast_strs = ast_strs[single:single+1]
|
|
|
|
average_tm_cuda, average_tm_nv = 0, 0
|
|
for num,ast in enumerate(ast_strs):
|
|
# cuda compile
|
|
culin = ast_str_to_lin(ast, opts=cudev.renderer)
|
|
culin.hand_coded_optimizations()
|
|
has_bf16 = any(b.dtype == dtypes.bfloat16 for b in culin.membufs)
|
|
|
|
cuda_prg = CompiledRunner(culin.to_program())
|
|
cubufs = bufs_from_lin(culin)
|
|
test_cubufs = get_fuzz_rawbufs(culin) if not has_bf16 else cubufs
|
|
|
|
rdr = nvdev.renderer
|
|
rdr.device = "NV"
|
|
nvlin = ast_str_to_lin(ast, opts=rdr)
|
|
nvlin.hand_coded_optimizations()
|
|
nv_prg = CompiledRunner(nvlin.to_program())
|
|
nvbufs = bufs_from_lin(nvlin)
|
|
test_nvbufs = get_fuzz_rawbufs(nvlin) if not has_bf16 else nvbufs
|
|
if not has_bf16:
|
|
for i,rawbuf in enumerate(test_nvbufs): rawbuf.copyin(test_cubufs[i].as_buffer())
|
|
|
|
# warmup
|
|
tm_cuda, tm_nv, failed = [], [], False
|
|
try:
|
|
cuda_prg(test_cubufs, {}, wait=True)
|
|
for i in range(5): tm_cuda.append(cuda_prg(cubufs, {}, wait=True))
|
|
except RuntimeError:
|
|
print("CUDA FAILED")
|
|
tm_cuda = [1e9]
|
|
failed = True
|
|
|
|
try:
|
|
nv_prg(test_nvbufs, {}, wait=True)
|
|
for i in range(5): tm_nv.append(nv_prg(nvbufs, {}, wait=True))
|
|
except RuntimeError:
|
|
print("NV FAILED")
|
|
tm_nv = [1e9]
|
|
failed = True
|
|
|
|
if not failed and not has_bf16:
|
|
curesult = np.frombuffer(test_cubufs[0].as_buffer(), _to_np_dtype(test_cubufs[0].dtype))
|
|
nvresult = np.frombuffer(test_nvbufs[0].as_buffer(), _to_np_dtype(test_nvbufs[0].dtype))
|
|
np.testing.assert_allclose(curesult, nvresult, rtol=1e-2, atol=1e-2)
|
|
|
|
average_tm_cuda += min(tm_cuda)
|
|
average_tm_nv += min(tm_nv)
|
|
ratio = min(tm_nv)/min(tm_cuda)
|
|
print(f"{average_tm_nv/average_tm_cuda:5.2f}x -- {num:4d} {colorize_float(ratio)} {min(tm_nv)*1e6:7.2f} us", nvlin.name)
|
|
if ratio > 1.04: print(f"NV slower {ratio}", nvlin.ast, nvlin.applied_opts)
|