mirror of https://github.com/commaai/tinygrad.git
103 lines
4.4 KiB
Python
103 lines
4.4 KiB
Python
import itertools
|
|
import numpy as np
|
|
from typing import DefaultDict, Dict, List, Set, Tuple, TypeVar, Union
|
|
from tinygrad.device import Buffer
|
|
from tinygrad.engine.realize import CustomOp, capturing, lower_schedule_item
|
|
from tinygrad.helpers import DEBUG, MULTIOUTPUT, colored, getenv
|
|
from tinygrad.engine.lazy import LazyBuffer
|
|
from tinygrad.engine.schedule import LBScheduleItem, _graph_schedule, ScheduleItem
|
|
from tinygrad.ops import MetaOps
|
|
from tinygrad.tensor import Tensor, _to_np_dtype
|
|
|
|
ctx_vars = { MULTIOUTPUT: (0, 1) }
|
|
FUZZ_SCHEDULE_MAX_PATHS = getenv("FUZZ_SCHEDULE_MAX_PATHS", 10)
|
|
|
|
def fuzz_schedule(outs:List[LazyBuffer]):
|
|
# find toposorts across all tunable params
|
|
unique_ts: Dict[Tuple[LBScheduleItem, ...], Dict[str, int]] = {}
|
|
for combination in itertools.product(*ctx_vars.values()):
|
|
for var, val in zip(ctx_vars, combination): var.value = val
|
|
ctx_var_values = dict(zip([v.key for v in ctx_vars], combination))
|
|
graph, in_degree, _ = _graph_schedule(outs)
|
|
for ts in find_all_toposorts(graph, in_degree): unique_ts[ts] = ctx_var_values
|
|
toposorts = list(unique_ts.items())
|
|
if DEBUG >= 1: print(colored(f"fuzzing {len(toposorts)} schedule permutations", "yellow"))
|
|
|
|
# setup ground truth
|
|
ground_truth: Dict[LazyBuffer, memoryview] = {}
|
|
assign_targets: Dict[LazyBuffer, LazyBuffer] = {}
|
|
# IMPORTANT: freeze prerealized bufs before ScheduleItem exec
|
|
prerealized: Dict[LazyBuffer, memoryview] = {}
|
|
seed = Tensor._seed
|
|
ts,_ = toposorts[0]
|
|
for lsi in ts:
|
|
for out in lsi.outputs:
|
|
# freeze assign state before exec
|
|
if out.op is MetaOps.ASSIGN:
|
|
prerealized[out] = out.buffer.as_buffer()
|
|
assign_targets[out.srcs[1]] = out
|
|
for x in lsi.inputs:
|
|
if x not in ground_truth and x.device != "NPY": prerealized[x] = x.buffer.as_buffer()
|
|
si = ScheduleItem(lsi.ast, tuple(x.buffer for x in lsi.outputs+lsi.inputs if x.size != 0), lsi.metadata)
|
|
_exec_si(si, seed)
|
|
for out in lsi.outputs:
|
|
ground_truth[out] = out.buffer.as_buffer()
|
|
del out.srcs # only schedule the LazyBuffer in this fuzz run
|
|
|
|
# exec and validate each permutation with new Buffers
|
|
for i, (ts, ctx) in enumerate(toposorts[1:]):
|
|
if DEBUG >= 1: print(colored(f"testing permutation {i} {ctx}", "yellow"))
|
|
rawbufs: Dict[LazyBuffer, Buffer] = {}
|
|
for lsi in ts:
|
|
for out in lsi.outputs:
|
|
base = rawbufs[lsi.inputs[0]].base if out.op is MetaOps.VIEW else None
|
|
rawbufs[out] = Buffer(out.buffer.device, out.buffer.size, out.buffer.dtype, base=base)
|
|
if out.op is MetaOps.ASSIGN: rawbufs[out].ensure_allocated().copyin(prerealized[out])
|
|
for x in lsi.inputs:
|
|
if x not in rawbufs:
|
|
# override the assign_target after ASSIGN
|
|
if x in assign_targets and assign_targets[x] in rawbufs: rawbufs[x] = rawbufs[assign_targets[x]]
|
|
elif x.device == "NPY": rawbufs[x] = x.buffer
|
|
# copy the pre realized input
|
|
else: rawbufs[x] = Buffer(x.buffer.device, x.buffer.size, x.buffer.dtype, initial_value=bytes(prerealized[x]))
|
|
si = ScheduleItem(lsi.ast, tuple(rawbufs[x] for x in lsi.bufs if x.size != 0), lsi.metadata)
|
|
_exec_si(si, seed)
|
|
for out in lsi.outputs:
|
|
outbuf = np.frombuffer(rawbufs[out].as_buffer(), _to_np_dtype(out.dtype))
|
|
try: np.testing.assert_allclose(outbuf, np.frombuffer(ground_truth[out], _to_np_dtype(out.dtype)), atol=1e-2, rtol=1e-2)
|
|
except Exception as e:
|
|
print(f"FAILED FOR {out}")
|
|
raise e
|
|
|
|
def _exec_si(si:ScheduleItem, seed:int):
|
|
ei = lower_schedule_item(si)
|
|
if len(capturing): capturing[0].add(ei)
|
|
if isinstance(ei.prg, CustomOp): Tensor._seed = seed
|
|
ei.run()
|
|
|
|
T = TypeVar("T")
|
|
def find_all_toposorts(graph:DefaultDict[T, List[T]], in_degree:Union[DefaultDict[T, int], Dict[T, int]]) -> List[Tuple[T, ...]]:
|
|
visited: Set[T] = set()
|
|
ret: List[Tuple[T, ...]] = []
|
|
path: List[T] = []
|
|
|
|
def recurse_paths(path:List[T]):
|
|
for v, d in in_degree.items():
|
|
if d != 0 or v in visited: continue
|
|
for u in graph[v]: in_degree[u] -= 1
|
|
path.append(v)
|
|
visited.add(v)
|
|
recurse_paths(path)
|
|
if len(ret) >= FUZZ_SCHEDULE_MAX_PATHS: return
|
|
# backtrack
|
|
for u in graph[v]: in_degree[u] += 1
|
|
path.pop()
|
|
visited.remove(v)
|
|
if len(path) == len(in_degree): ret.append(tuple(path))
|
|
recurse_paths(path)
|
|
|
|
if len(ret) == 0: raise RuntimeError("detected cycle in the graph")
|
|
# verify all paths are unique
|
|
assert len(ret) == len(set(ret))
|
|
return ret
|