You like pytorch? You like micrograd? You love tinygrad! ❤️
Go to file
qazal 4380ccb169
Non fp32 math (#2264)
* `global_load` and `global_store` using buffer dtype

* `UOps.PHI` in all dtypes

* `UOps.ALU` in all dtypes

* `UOps.CONST` & `UOps.DEFINE_ACC` in all dtypes

* -- endof implementation --
+tiny lint changes

* these tests require the fp16 extention

you can run them locally to confirm they're green: (GPT2 test is broken in master for mac, see [this](https://discord.com/channels/1068976834382925865/1069001075828469790/1177993277958533261)

`GPU=1 python3 -m pytest test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_dequantizelinear_e4m3fn_float16_cpu test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_max_float16_cpu test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_min_float16_cpu test/models/test_real_world.py::TestRealWorld::test_llama test/models/test_real_world.py::TestRealWorld::test_gpt2 test/models/test_whisper.py test/test_specific_conv.py::TestSpecific::test_big_vec_mul`

skip the new test_linearizer_failures in CI GPU because of the fp16 extention

This passes on a real GPU since the extention is available:
`GPU=1 python3 -m pytest test/test_linearizer_failures.py::TestLinearizerFailures::test_failure_8`

see CI logs [here](https://github.com/tinygrad/tinygrad/actions/runs/6996590597/job/19032641427#step:14:644)

* these tests fail in CI due to segfaults and CPU crashes

To confirm they're green locally, you can run the following commands:

1. For the tests skipped in test_ops.py (note: CLANG is very slow)

`for var in GPU CUDA CLANG; do export $var=1; for test in test/test_ops.py::TestOps::test_slice_fancy_indexing_no_dim_collapse test/test_ops.py::TestOps::test_slice_fancy_indexing_dim_collapse_int test/test_ops.py::TestOps::test_slice_fancy_indexing_dim_inject_none test/test_ops.py::TestOps::test_slice_fancy_indexing_dim_inject_and_collapse; do python3 -m pytest $test; done; unset $var; done`

2. For the ONNX tests skipped in CLANG:

```
CLANG=1 python3 -m pytest test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_ai_onnx_ml_array_feature_extractor_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_gather_elements_0_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_mean_weight_ii_3d_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_gather_elements_1_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_NCd1_mean_weight_negative_ii_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_weight_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2d3_none_no_weight_negative_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_mean_weight_ii_4d_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_mean_weight_ii_3d_log_prob_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_gather_elements_negative_indices_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_NCd1d2d3d4d5_mean_weight_log_prob_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_NCd1_mean_weight_negative_ii_log_prob_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_no_weight_reduction_mean_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_NCd1d2d3d4d5_mean_weight_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2d3d4d5_mean_weight_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_mean_weight_negative_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_sce_mean_weight_ii_4d_log_prob_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_with_weight_reduction_mean_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1_weight_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_with_weight_reduction_sum_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_with_weight_reduction_sum_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_reduction_sum_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2d3d4d5_none_no_weight_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2d3_sum_weight_high_ii_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_reduction_mean_expanded_cpu \
test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_nllloss_NCd1d2_with_weight_expanded_cpu
```

3. The LLVM test I skipped here is already [skipped in master for all backends](https://github.com/tinygrad/tinygrad/blob/master/test/external/external_test_onnx_backend.py#L186), I just made it more specific

`LLVM=1 python3 -m pytest test/external/external_test_onnx_backend.py::OnnxBackendNodeModelTest::test_dequantizelinear_e4m3fn_float16_cpu`

* Revert "these tests fail in CI due to segfaults and CPU crashes"

This reverts commit 15db57014381a4449d563526ac6c870e36257658.

* merge with cleanup-vectorized-hip-renders

* barely working HIP P1, ALU ops need a refactor?

* manage the fact that in HIP [half2 is actually an unsigned int vec](f921880387/hip/include/hip/amd_detail/amd_hip_fp16.h (L59)) and half is a totally different __half that [has an unsigned int element in it](f921880387/hip/include/hip/amd_detail/amd_hip_fp16.h (L50)) but can't be accessed [because it's private](f921880387/hip/include/hip/amd_detail/amd_hip_fp16.h (L86)). If you just do this:

```
half2 val0 = // ...
half val1 = // ...
```
then you can't do:
```
val0.x + val1 // error: use of overloaded operator '+' is ambiguous (with operand types 'unsigned short' and 'half' (aka '__half'))
```

* update the sign definition to avoid division by zero in all dtypes

* diff cleanup p1: why were these in the diff anyways

* less hacky HIP, enable CIFAR fp16 benchmark, test ops for HIP in CI!

add ALU ops overloads for HIP

this will make HIP max work

handle mod

Revert "handle mod"

This reverts commit 370fd4b3fbe99b6ae8cc293d005b106628205933.

update max to use hmax

add HIP GEP render logic

enable CIFAR fp16 benchmark

test ops for HIP

back to store as float because this only works for float4 grouping right now

test_ops for hip!!

always sign

* back to the sign we had before because we cant do a backward pass on a Less node

* remove old hacks

HIP compiling test_ops in CI takes ~9 mins, not doing it for now

new HIP ALUs

* reduce accs done right

* refactor to function

* no device hacks

hacks p2

the other way

* LLVM ALU ops

half, float and double are all float

update max

* update test_uops, cmplt is always a bool in the real linearizer. assertAlmostEqual is wrong when ret is bool

* cleanup LLVM wrong code

* dummy change for the CUDA install glitch

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2023-12-03 13:45:49 -08:00
.github/workflows Non fp32 math (#2264) 2023-12-03 13:45:49 -08:00
disassemblers/adreno [ready] Replacing os with pathlib (#1708) 2023-08-30 10:41:08 -07:00
docs No dtype alloc (#2570) 2023-12-02 13:29:40 -08:00
examples Fix cl import in the copy_speed test and cifar example (#2586) 2023-12-03 09:22:07 -08:00
extra Non fp32 math (#2264) 2023-12-03 13:45:49 -08:00
openpilot Switch ops_gpu -> gpuctypes (#2532) 2023-12-01 22:30:21 -08:00
test Non fp32 math (#2264) 2023-12-03 13:45:49 -08:00
tinygrad Non fp32 math (#2264) 2023-12-03 13:45:49 -08:00
weights gitignore in weights 2023-08-02 16:26:41 +00:00
.editorconfig Revert "update editorconfig, enforce via CI (#1343)" (#1380) 2023-07-31 10:35:50 -07:00
.gitignore new style device (#2530) 2023-11-30 17:07:16 -08:00
.pre-commit-config.yaml refactor to remove extra kernel params (#2563) 2023-12-02 00:32:25 -08:00
.pylintrc style: else-after-return (#1216) 2023-07-12 10:26:38 -07:00
.tokeignore Add a quick start guide (#900) 2023-06-04 08:51:20 -07:00
CONTRIBUTING.md feat: reword contributing (#1131) 2023-07-04 22:17:47 -07:00
LICENSE Updated LICENSE year (#760) 2023-05-01 15:35:23 -07:00
README.md beautiful_mnist.py link 2023-11-23 14:58:22 -08:00
mypy.ini back to 6.54GB for stable diffusion (#2288) 2023-11-13 16:50:04 -08:00
push_pypi.sh push pypi 2020-10-27 08:13:15 -07:00
pytest.ini update pytest marks and CI test filters (#2587) 2023-12-03 15:20:44 -05:00
ruff.toml ruff check whitespaces (#2547) 2023-12-01 10:42:20 -08:00
run_multibackend.sh convert `$@` to `"$@"` in `run_multibackend.sh` (#1379) 2023-07-31 10:39:22 -07:00
setup.py Switch ops_gpu -> gpuctypes (#2532) 2023-12-01 22:30:21 -08:00
strip_whitespace.sh strip whitespace 2023-06-27 10:11:43 -07:00
sz.py fixes (#1893) 2023-09-22 07:20:27 +08:00

README.md

logo

tinygrad: For something between PyTorch and karpathy/micrograd. Maintained by tiny corp.

Homepage | Documentation | Examples | Showcase | Discord

GitHub Repo stars Unit Tests Discord


This may not be the best deep learning framework, but it is a deep learning framework.

Due to its extreme simplicity, it aims to be the easiest framework to add new accelerators to, with support for both inference and training. If XLA is CISC, tinygrad is RISC.

tinygrad is still alpha software, but we raised some money to make it good. Someday, we will tape out chips.

Features

LLaMA and Stable Diffusion

tinygrad can run LLaMA and Stable Diffusion!

Laziness

Try a matmul. See how, despite the style, it is fused into one kernel with the power of laziness.

DEBUG=3 python3 -c "from tinygrad import Tensor;
N = 1024; a, b = Tensor.rand(N, N), Tensor.rand(N, N);
c = (a.reshape(N, 1, N) * b.permute(1,0).reshape(1, N, N)).sum(axis=2);
print((c.numpy() - (a.numpy() @ b.numpy())).mean())"

And we can change DEBUG to 4 to see the generated code.

Neural networks

As it turns out, 90% of what you need for neural networks are a decent autograd/tensor library. Throw in an optimizer, a data loader, and some compute, and you have all you need.

from tinygrad import Tensor, nn

class LinearNet:
  def __init__(self):
    self.l1 = Tensor.kaiming_uniform(784, 128)
    self.l2 = Tensor.kaiming_uniform(128, 10)
  def __call__(self, x:Tensor) -> Tensor:
    return x.flatten(1).dot(self.l1).relu().dot(self.l2)

model = LinearNet()
optim = nn.optim.Adam([model.l1, model.l2], lr=0.001)

x, y = Tensor.rand(4, 1, 28, 28), Tensor([2,4,3,7])  # replace with real mnist dataloader

for i in range(10):
  optim.zero_grad()
  loss = model(x).sparse_categorical_crossentropy(y).backward()
  optim.step()
  print(i, loss.item())

See examples/beautiful_mnist.py for the full version that gets 98% in ~5 seconds

Accelerators

tinygrad already supports numerous accelerators, including:

And it is easy to add more! Your accelerator of choice only needs to support a total of 26 (optionally 27) low level ops. More information can be found in the documentation for adding new accelerators.

Installation

The current recommended way to install tinygrad is from source.

From source

git clone https://github.com/tinygrad/tinygrad.git
cd tinygrad
python3 -m pip install -e .

Don't forget the . at the end!

Documentation

Documentation along with a quick start guide can be found in the docs/ directory.

Quick example comparing to PyTorch

from tinygrad import Tensor

x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()

print(x.grad.numpy())  # dz/dx
print(y.grad.numpy())  # dz/dy

The same thing but in PyTorch:

import torch

x = torch.eye(3, requires_grad=True)
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()

print(x.grad.numpy())  # dz/dx
print(y.grad.numpy())  # dz/dy

Contributing

There has been a lot of interest in tinygrad lately. Here are some basic guidelines for contributing:

  • Bug fixes are the best and always welcome! Like this one.
  • If you don't understand the code you are changing, don't change it!
  • All code golf PRs will be closed, but conceptual cleanups are great.
  • Features are welcome. Though if you are adding a feature, you need to include tests.
  • Improving test coverage is great, with reliable non-brittle tests.

Additional guidelines can be found in CONTRIBUTING.md.

Running tests

For more examples on how to run the full test suite please refer to the CI workflow.

Some examples:

python3 -m pip install -e '.[testing]'
python3 -m pytest
python3 -m pytest -v -k TestTrain
python3 ./test/models/test_train.py TestTrain.test_efficientnet