tinygrad/test/test_specific_conv.py

56 lines
2.3 KiB
Python

import unittest
from tinygrad.tensor import Tensor
from tinygrad.helpers import CI
from tinygrad import Device, dtypes
# similar to test/external/external_test_gpu_ast.py, but universal
@unittest.skipIf(Device.DEFAULT == "CUDA" and CI, "slow on CUDA CI")
class TestSpecific(unittest.TestCase):
# from openpilot
# 1x1 6 <- 24
def test_1x1_6_24(self):
x = Tensor.randn(1, 24*4, 32, 64)
w = Tensor.randn(6*4, 24*4, 1, 1)
x.conv2d(w).permute(0,2,3,1).reshape(32, 384, 4).contiguous().realize()
def test_vec_mul(self):
# this forces it to be an image...
x = Tensor.ones(1, 512, 4).contiguous().reshape(1, 2048)
w = Tensor.randn(2048, 512)
(x @ w).reshape(1, 128, 4).contiguous().realize()
@unittest.skipIf(Device.DEFAULT in ["LLVM", "WEBGPU", "GPU", "CUDA"], "Broken on LLVM and webgpu, GPU requires cl_khr_fp16")
def test_big_vec_mul(self):
# from LLaMA
# 0 buffer<4096, dtypes.float> [View((1024, 1, 1, 4), (4, 0, 0, 1), 0, None)]
# 1 buffer<4096, dtypes.float> [View((1024, 1024, 4, 4), (0, 4, 1, 0), 0, None)]
# 2 buffer<16777216, dtypes.half> [View((1024, 1024, 4, 4), (16384, 4, 1, 4096), 0, None)]
x = Tensor.randn(4096).realize()
w = Tensor.randn(4096, 4096, device='cpu').cast(dtypes.float16).to(Device.DEFAULT).realize()
(x @ w.T).realize()
# from https://dl.acm.org/doi/pdf/10.1145/3495243.3517020
# ~260 GFLOPS on Adreno 640, should be 260*(720/890)*(596/710) = 176.5 on downclocked 630
# we get 170
def test_1x1_28_28(self):
x = Tensor.randn(1, 256, 28, 28)
w = Tensor.randn(256, 256, 1, 1)
x.conv2d(w).permute(0,2,3,1).reshape(28, 28*256//4, 4).contiguous().realize()
# 132 GFLOPS on Adreno 640, should be 132*(720/890)*(596/710) = 90 on downclocked 630
# gets 54 with broken opt, 74 without opt, and 146 if we pad and opt 3!
def test_3x3_28_28_stride_2(self):
x = Tensor.randn(1, 288, 36, 36)
w = Tensor.randn(384, 288, 3, 3)
x.conv2d(w, stride=2).permute(0,2,3,1).reshape(17, 17*384//4, 4).contiguous().realize()
def test_3x3_28_28_stride_2_padded(self):
x = Tensor.randn(1, 288, 36, 36)
w = Tensor.randn(384, 288, 3, 3)
x.conv2d(w, stride=2, padding=1).permute(0,2,3,1).reshape(18, 18*384//4, 4).contiguous().realize()
if __name__ == '__main__':
unittest.main()