tinygrad/test/testextra/test_lr_scheduler.py

120 lines
5.7 KiB
Python

import numpy as np
import torch
import unittest
from tinygrad.tensor import Tensor
from tinygrad.nn.state import get_parameters
from tinygrad.nn.optim import Adam, SGD
from tinygrad.helpers import DEBUG
from extra.lr_scheduler import MultiStepLR, ReduceLROnPlateau, CosineAnnealingLR, OneCycleLR
from extra.training import train, evaluate
from extra.datasets import fetch_mnist
np.random.seed(1337)
Tensor.manual_seed(1337)
X_train, Y_train, X_test, Y_test = fetch_mnist()
class TinyBobNet:
def __init__(self):
self.l1 = Tensor.scaled_uniform(784, 128)
self.l2 = Tensor.scaled_uniform(128, 10)
def parameters(self):
return get_parameters(self)
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).log_softmax()
def lr_scheduler_training(sched_fn=None, args=None):
model = TinyBobNet()
optim = Adam(model.parameters(), lr=0.01)
if sched_fn is not None: sched = sched_fn(optim, **args)
for _ in range(25):
train(model, X_train, Y_train, optim, 100)
if sched_fn is not None:
if isinstance(sched, ReduceLROnPlateau):
sched.step(evaluate(model, X_test, Y_test))
else:
sched.step()
return evaluate(model, X_test, Y_test)
def current_lr(optim): return optim.param_groups[0]['lr'] if hasattr(optim, 'param_groups') else optim.lr
def get_lrs(optim, sched, epochs, steps=1, accs=None):
lr = current_lr(optim)
if not isinstance(lr, float): lr = lr.numpy()[0]
lrs = [lr]
for e in range(epochs):
for _ in range(steps):
optim.step()
sched.step() if accs is None else sched.step(accs[e])
lr = current_lr(optim)
if not isinstance(lr, float): lr = lr.numpy()[0]
lrs.append(lr)
return lrs
class TestLrScheduler(unittest.TestCase):
def _test_lr_scheduler(self, tinygrad_sched, torch_sched, epochs, opts, atol, rtol, adam=True):
accs = opts.pop('accs', None)
test_tensor = Tensor([0.], requires_grad=True) # NOTE: optimizers are broken on 0-dim tensors because it broadcasts to [lr]
test_tensor.mean().backward()
if adam:
tinygrad_optim, torch_optim = Adam([test_tensor], lr=0.01), torch.optim.Adam([torch.tensor([0.], requires_grad=True)], lr=0.01)
else:
tinygrad_optim, torch_optim = SGD([test_tensor], lr=0.01), torch.optim.SGD([torch.tensor([0.], requires_grad=True)], lr=0.01)
tinygrad_sched, torch_sched = tinygrad_sched(tinygrad_optim, **opts), torch_sched(torch_optim, **opts)
tinygrad_lrs = get_lrs(tinygrad_optim, tinygrad_sched, epochs, accs=accs)
torch_lrs = get_lrs(torch_optim, torch_sched, epochs, accs=accs)
np.testing.assert_allclose(tinygrad_lrs, torch_lrs, atol=atol, rtol=rtol)
def _test_multisteplr(self, epochs, opts, atol, rtol, adam=True):
self._test_lr_scheduler(MultiStepLR, torch.optim.lr_scheduler.MultiStepLR, epochs, opts, atol, rtol, adam=adam)
def _test_reducelronplateau(self, epochs, opts, atol, rtol):
opts['accs'] = np.random.randn(epochs)
self._test_lr_scheduler(ReduceLROnPlateau, torch.optim.lr_scheduler.ReduceLROnPlateau, epochs, opts, atol, rtol)
def _test_cosineannealinglr(self, epochs, opts, atol, rtol):
opts['T_max'] = epochs
self._test_lr_scheduler(CosineAnnealingLR, torch.optim.lr_scheduler.CosineAnnealingLR, epochs, opts, atol, rtol)
def _test_onecyclelr(self, epochs, opts, atol, rtol):
opts['total_steps'] = epochs
self._test_lr_scheduler(OneCycleLR, torch.optim.lr_scheduler.OneCycleLR, epochs, opts, atol, rtol)
def test_multisteplr(self): self._test_multisteplr(10, {'milestones': [1, 2, 7]}, 1e-6, 1e-6)
def test_multisteplr_gamma(self): self._test_multisteplr(10, {'milestones': [1, 2, 7], 'gamma': 0.1337}, 1e-6, 1e-6)
def test_reducelronplateau(self): self._test_reducelronplateau(100, {}, 1e-6, 1e-6)
def test_reducelronplateau_max(self): self._test_reducelronplateau(100, {'mode': 'max'}, 1e-6, 1e-6)
def test_reducelronplateau_factor(self): self._test_reducelronplateau(100, {'factor': 0.1337}, 1e-6, 1e-6)
def test_reducelronplateau_patience(self): self._test_reducelronplateau(100, {'patience': 3}, 1e-6, 1e-6)
def test_reducelronplateau_threshold(self): self._test_reducelronplateau(100, {'threshold': 1e-6}, 1e-6, 1e-6)
def test_reducelronplateau_threshold_mode(self): self._test_reducelronplateau(100, {'threshold_mode': 'abs'}, 1e-6, 1e-6)
def test_cosineannealinglr(self): self._test_cosineannealinglr(100, {}, 1e-6, 1e-6)
def test_cosineannealinglr_eta_min(self): self._test_cosineannealinglr(100, {'eta_min': 0.001}, 1e-6, 1e-6)
def test_multistep_2step(self):
# was making this fail with LRU=1, some issue with epoch_counter
if DEBUG>=2: print("first")
self._test_multisteplr(1, {'milestones': [1]}, 1e-6, 1e-6, adam=False)
if DEBUG>=2: print("second")
self._test_multisteplr(1, {'milestones': [1], 'gamma': 0.133}, 1e-6, 1e-6, adam=False)
if DEBUG>=2: print("third")
def test_onecyclelr(self): self._test_onecyclelr(1000, {'pct_start': 0.3, 'anneal_strategy': 'linear',
'cycle_momentum': False, 'div_factor': 25.0,
'final_div_factor': 10000.0, 'max_lr':1e-5}, 1e-6, 1e-6)
@unittest.skip("slow")
def test_training(self):
without = lr_scheduler_training()
sched_fns = [MultiStepLR, ReduceLROnPlateau, CosineAnnealingLR, OneCycleLR]
argss = [{'milestones': [5, 7, 10, 15], 'gamma': 0.5}, {'factor': 0.5, 'patience': 2}, {'T_max': 25, 'eta_min': 0.001},
{'pct_start': 0.3, 'anneal_strategy': 'linear', 'cycle_momentum': False, 'div_factor': 25.0, 'final_div_factor': 10000.0,
'max_lr':1e-5, 'total_steps': 25}]
for sched_fn, args in zip(sched_fns, argss):
with_sched = lr_scheduler_training(sched_fn, args)
assert with_sched > without
if __name__ == '__main__':
unittest.main()