tinygrad/examples/train_efficientnet.py

96 lines
2.7 KiB
Python

import os
import time
import numpy as np
from extra.efficientnet import EfficientNet
from tinygrad.tensor import Tensor
from extra.utils import get_parameters, fetch
from tqdm import trange
import tinygrad.optim as optim
import io
import tarfile
import pickle
class TinyConvNet:
def __init__(self, classes=10):
conv = 3
inter_chan, out_chan = 8, 16 # for speed
self.c1 = Tensor.uniform(inter_chan,3,conv,conv)
self.c2 = Tensor.uniform(out_chan,inter_chan,conv,conv)
self.l1 = Tensor.uniform(out_chan*6*6, classes)
def forward(self, x):
x = x.conv2d(self.c1).relu().max_pool2d()
x = x.conv2d(self.c2).relu().max_pool2d()
x = x.reshape(shape=[x.shape[0], -1])
return x.dot(self.l1).logsoftmax()
def load_cifar():
tt = tarfile.open(fileobj=io.BytesIO(fetch('https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz')), mode='r:gz')
db = pickle.load(tt.extractfile('cifar-10-batches-py/data_batch_1'), encoding="bytes")
X = db[b'data'].reshape((-1, 3, 32, 32))
Y = np.array(db[b'labels'])
return X, Y
if __name__ == "__main__":
X_train, Y_train = load_cifar()
classes = 10
Tensor.default_gpu = os.getenv("GPU") is not None
TINY = os.getenv("TINY") is not None
TRANSFER = os.getenv("TRANSFER") is not None
if TINY:
model = TinyConvNet(classes)
elif TRANSFER:
model = EfficientNet(int(os.getenv("NUM", "0")), classes, has_se=True)
model.load_weights_from_torch()
else:
model = EfficientNet(int(os.getenv("NUM", "0")), classes, has_se=False)
parameters = get_parameters(model)
print("parameters", len(parameters))
optimizer = optim.Adam(parameters, lr=0.001)
#BS, steps = 16, 32
BS, steps = 64 if TINY else 16, 2048
for i in (t := trange(steps)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
img = X_train[samp].astype(np.float32)
st = time.time()
out = model.forward(Tensor(img))
fp_time = (time.time()-st)*1000.0
Y = Y_train[samp]
y = np.zeros((BS,classes), np.float32)
y[range(y.shape[0]),Y] = -classes
y = Tensor(y)
loss = out.logsoftmax().mul(y).mean()
optimizer.zero_grad()
st = time.time()
loss.backward()
bp_time = (time.time()-st)*1000.0
st = time.time()
optimizer.step()
opt_time = (time.time()-st)*1000.0
#print(out.cpu().data)
st = time.time()
loss = loss.cpu().data
cat = np.argmax(out.cpu().data, axis=1)
accuracy = (cat == Y).mean()
finish_time = (time.time()-st)*1000.0
# printing
t.set_description("loss %.2f accuracy %.2f -- %.2f + %.2f + %.2f + %.2f = %.2f" %
(loss, accuracy,
fp_time, bp_time, opt_time, finish_time,
fp_time + bp_time + opt_time + finish_time))
del out, y, loss