mirror of https://github.com/commaai/tinygrad.git
300 lines
9.5 KiB
Python
300 lines
9.5 KiB
Python
from models.mask_rcnn import MaskRCNN
|
|
from models.resnet import ResNet
|
|
from models.mask_rcnn import BoxList
|
|
from torch.nn import functional as F
|
|
from torchvision import transforms as T
|
|
from torchvision.transforms import functional as Ft
|
|
import random
|
|
from tinygrad.tensor import Tensor
|
|
from PIL import Image
|
|
import numpy as np
|
|
import torch
|
|
import argparse
|
|
import cv2
|
|
|
|
|
|
class Resize:
|
|
def __init__(self, min_size, max_size):
|
|
if not isinstance(min_size, (list, tuple)):
|
|
min_size = (min_size,)
|
|
self.min_size = min_size
|
|
self.max_size = max_size
|
|
|
|
# modified from torchvision to add support for max size
|
|
def get_size(self, image_size):
|
|
w, h = image_size
|
|
size = random.choice(self.min_size)
|
|
max_size = self.max_size
|
|
if max_size is not None:
|
|
min_original_size = float(min((w, h)))
|
|
max_original_size = float(max((w, h)))
|
|
if max_original_size / min_original_size * size > max_size:
|
|
size = int(round(max_size * min_original_size / max_original_size))
|
|
|
|
if (w <= h and w == size) or (h <= w and h == size):
|
|
return (h, w)
|
|
|
|
if w < h:
|
|
ow = size
|
|
oh = int(size * h / w)
|
|
else:
|
|
oh = size
|
|
ow = int(size * w / h)
|
|
|
|
return (oh, ow)
|
|
|
|
def __call__(self, image):
|
|
size = self.get_size(image.size)
|
|
image = Ft.resize(image, size)
|
|
return image
|
|
|
|
|
|
class Normalize:
|
|
def __init__(self, mean, std, to_bgr255=True):
|
|
self.mean = mean
|
|
self.std = std
|
|
self.to_bgr255 = to_bgr255
|
|
|
|
def __call__(self, image):
|
|
if self.to_bgr255:
|
|
image = image[[2, 1, 0]] * 255
|
|
else:
|
|
image = image[[0, 1, 2]] * 255
|
|
image = Ft.normalize(image, mean=self.mean, std=self.std)
|
|
return image
|
|
|
|
transforms = lambda size_scale: T.Compose(
|
|
[
|
|
Resize(int(800*size_scale), int(1333*size_scale)),
|
|
T.ToTensor(),
|
|
Normalize(
|
|
mean=[102.9801, 115.9465, 122.7717], std=[1., 1., 1.], to_bgr255=True
|
|
),
|
|
]
|
|
)
|
|
|
|
def expand_boxes(boxes, scale):
|
|
w_half = (boxes[:, 2] - boxes[:, 0]) * .5
|
|
h_half = (boxes[:, 3] - boxes[:, 1]) * .5
|
|
x_c = (boxes[:, 2] + boxes[:, 0]) * .5
|
|
y_c = (boxes[:, 3] + boxes[:, 1]) * .5
|
|
|
|
w_half *= scale
|
|
h_half *= scale
|
|
|
|
boxes_exp = torch.zeros_like(boxes)
|
|
boxes_exp[:, 0] = x_c - w_half
|
|
boxes_exp[:, 2] = x_c + w_half
|
|
boxes_exp[:, 1] = y_c - h_half
|
|
boxes_exp[:, 3] = y_c + h_half
|
|
return boxes_exp
|
|
|
|
|
|
def expand_masks(mask, padding):
|
|
N = mask.shape[0]
|
|
M = mask.shape[-1]
|
|
pad2 = 2 * padding
|
|
scale = float(M + pad2) / M
|
|
padded_mask = mask.new_zeros((N, 1, M + pad2, M + pad2))
|
|
padded_mask[:, :, padding:-padding, padding:-padding] = mask
|
|
return padded_mask, scale
|
|
|
|
|
|
def paste_mask_in_image(mask, box, im_h, im_w, thresh=0.5, padding=1):
|
|
# TODO: remove torch
|
|
mask = torch.tensor(mask.numpy())
|
|
box = torch.tensor(box.numpy())
|
|
padded_mask, scale = expand_masks(mask[None], padding=padding)
|
|
mask = padded_mask[0, 0]
|
|
box = expand_boxes(box[None], scale)[0]
|
|
box = box.to(dtype=torch.int32)
|
|
|
|
TO_REMOVE = 1
|
|
w = int(box[2] - box[0] + TO_REMOVE)
|
|
h = int(box[3] - box[1] + TO_REMOVE)
|
|
w = max(w, 1)
|
|
h = max(h, 1)
|
|
|
|
mask = mask.expand((1, 1, -1, -1))
|
|
|
|
mask = mask.to(torch.float32)
|
|
mask = F.interpolate(mask, size=(h, w), mode='bilinear', align_corners=False)
|
|
mask = mask[0][0]
|
|
|
|
if thresh >= 0:
|
|
mask = mask > thresh
|
|
else:
|
|
mask = (mask * 255).to(torch.uint8)
|
|
|
|
im_mask = torch.zeros((im_h, im_w), dtype=torch.uint8)
|
|
x_0 = max(box[0], 0)
|
|
x_1 = min(box[2] + 1, im_w)
|
|
y_0 = max(box[1], 0)
|
|
y_1 = min(box[3] + 1, im_h)
|
|
|
|
im_mask[y_0:y_1, x_0:x_1] = mask[
|
|
(y_0 - box[1]): (y_1 - box[1]), (x_0 - box[0]): (x_1 - box[0])
|
|
]
|
|
return im_mask
|
|
|
|
|
|
class Masker:
|
|
def __init__(self, threshold=0.5, padding=1):
|
|
self.threshold = threshold
|
|
self.padding = padding
|
|
|
|
def forward_single_image(self, masks, boxes):
|
|
boxes = boxes.convert("xyxy")
|
|
im_w, im_h = boxes.size
|
|
res = [
|
|
paste_mask_in_image(mask[0], box, im_h, im_w, self.threshold, self.padding)
|
|
for mask, box in zip(masks, boxes.bbox)
|
|
]
|
|
if len(res) > 0:
|
|
res = torch.stack(res, dim=0)[:, None]
|
|
else:
|
|
res = masks.new_empty((0, 1, masks.shape[-2], masks.shape[-1]))
|
|
return Tensor(res.numpy())
|
|
|
|
def __call__(self, masks, boxes):
|
|
if isinstance(boxes, BoxList):
|
|
boxes = [boxes]
|
|
|
|
results = []
|
|
for mask, box in zip(masks, boxes):
|
|
result = self.forward_single_image(mask, box)
|
|
results.append(result)
|
|
return results
|
|
|
|
|
|
masker = Masker(threshold=0.5, padding=1)
|
|
|
|
def select_top_predictions(predictions, confidence_threshold=0.9):
|
|
scores = predictions.get_field("scores").numpy()
|
|
keep = [idx for idx, score in enumerate(scores) if score > confidence_threshold]
|
|
return predictions[keep]
|
|
|
|
def compute_prediction(original_image, model, confidence_threshold, size_scale=1.0):
|
|
image = transforms(size_scale)(original_image).numpy()
|
|
image = Tensor(image, requires_grad=False)
|
|
predictions = model(image)
|
|
prediction = predictions[0]
|
|
prediction = select_top_predictions(prediction, confidence_threshold)
|
|
width, height = original_image.size
|
|
prediction = prediction.resize((width, height))
|
|
|
|
if prediction.has_field("mask"):
|
|
masks = prediction.get_field("mask")
|
|
masks = masker([masks], [prediction])[0]
|
|
prediction.add_field("mask", masks)
|
|
return prediction
|
|
|
|
def compute_prediction_batched(batch, model, size_scale=1.0):
|
|
imgs = []
|
|
for img in batch:
|
|
imgs.append(transforms(size_scale)(img).numpy())
|
|
image = [Tensor(image, requires_grad=False) for image in imgs]
|
|
predictions = model(image)
|
|
del image
|
|
return predictions
|
|
|
|
palette = np.array([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
|
|
|
|
def findContours(*args, **kwargs):
|
|
if cv2.__version__.startswith('4'):
|
|
contours, hierarchy = cv2.findContours(*args, **kwargs)
|
|
elif cv2.__version__.startswith('3'):
|
|
_, contours, hierarchy = cv2.findContours(*args, **kwargs)
|
|
return contours, hierarchy
|
|
|
|
def compute_colors_for_labels(labels):
|
|
l = labels[:, None]
|
|
colors = l * palette
|
|
colors = (colors % 255).astype("uint8")
|
|
return colors
|
|
|
|
def overlay_mask(image, predictions):
|
|
image = np.asarray(image)
|
|
masks = predictions.get_field("mask").numpy()
|
|
labels = predictions.get_field("labels").numpy()
|
|
|
|
colors = compute_colors_for_labels(labels).tolist()
|
|
|
|
for mask, color in zip(masks, colors):
|
|
thresh = mask[0, :, :, None]
|
|
contours, hierarchy = findContours(
|
|
thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
image = cv2.drawContours(image, contours, -1, color, 3)
|
|
|
|
composite = image
|
|
|
|
return composite
|
|
|
|
CATEGORIES = [
|
|
"__background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
|
|
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant",
|
|
"bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard",
|
|
"sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle",
|
|
"wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli",
|
|
"carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table",
|
|
"toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster",
|
|
"sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush",
|
|
]
|
|
|
|
def overlay_boxes(image, predictions):
|
|
labels = predictions.get_field("labels").numpy()
|
|
boxes = predictions.bbox
|
|
image = np.asarray(image)
|
|
colors = compute_colors_for_labels(labels).tolist()
|
|
|
|
for box, color in zip(boxes, colors):
|
|
box = torch.tensor(box.numpy())
|
|
box = box.to(torch.int64)
|
|
top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
|
|
image = cv2.rectangle(
|
|
image, tuple(top_left), tuple(bottom_right), tuple(color), 1
|
|
)
|
|
|
|
return image
|
|
|
|
def overlay_class_names(image, predictions):
|
|
scores = predictions.get_field("scores").numpy().tolist()
|
|
labels = predictions.get_field("labels").numpy().tolist()
|
|
labels = [CATEGORIES[int(i)] for i in labels]
|
|
boxes = predictions.bbox.numpy()
|
|
image = np.asarray(image)
|
|
template = "{}: {:.2f}"
|
|
for box, score, label in zip(boxes, scores, labels):
|
|
x, y = box[:2]
|
|
s = template.format(label, score)
|
|
x, y = int(x), int(y)
|
|
cv2.putText(
|
|
image, s, (x, y), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1
|
|
)
|
|
|
|
return image
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Run MaskRCNN', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument('--image', type=str, help="Path of the image to run")
|
|
parser.add_argument('--threshold', type=float, default=0.7, help="Detector threshold")
|
|
parser.add_argument('--size_scale', type=float, default=1.0, help="Image resize multiplier")
|
|
parser.add_argument('--out', type=str, default="/tmp/rendered.png", help="Output filename")
|
|
args = parser.parse_args()
|
|
|
|
resnet = ResNet(50, num_classes=None, stride_in_1x1=True)
|
|
model_tiny = MaskRCNN(resnet)
|
|
model_tiny.load_from_pretrained()
|
|
img = Image.open(args.image)
|
|
top_result_tiny = compute_prediction(img, model_tiny, confidence_threshold=args.threshold, size_scale=args.size_scale)
|
|
bbox_image = overlay_boxes(img, top_result_tiny)
|
|
mask_image = overlay_mask(bbox_image, top_result_tiny)
|
|
final_image = overlay_class_names(mask_image, top_result_tiny)
|
|
|
|
im = Image.fromarray(final_image)
|
|
print(f"saving {args.out}")
|
|
im.save(args.out)
|
|
im.show()
|