tinygrad/mnist.py

79 lines
2.1 KiB
Python

#!/usr/bin/env python
import numpy as np
from tensor import Tensor
from tqdm import trange
# load the mnist dataset
def fetch(url):
import requests, gzip, os, hashlib, numpy
fp = os.path.join("/tmp", hashlib.md5(url.encode('utf-8')).hexdigest())
if not os.path.isfile(fp):
with open(fp, "rb") as f:
dat = f.read()
else:
with open(fp, "wb") as f:
dat = requests.get(url).content
f.write(dat)
return numpy.frombuffer(gzip.decompress(dat), dtype=np.uint8).copy()
X_train = fetch("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz")[0x10:].reshape((-1, 28, 28))
Y_train = fetch("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz")[8:]
X_test = fetch("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz")[0x10:].reshape((-1, 28, 28))
Y_test = fetch("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz")[8:]
# train a model
def layer_init(m, h):
ret = np.random.uniform(-1., 1., size=(m,h))/np.sqrt(m*h)
return ret.astype(np.float32)
l1 = Tensor(layer_init(784, 128))
l2 = Tensor(layer_init(128, 10))
lr = 0.01
BS = 128
losses, accuracies = [], []
for i in (t := trange(1000)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(X_train[samp].reshape((-1, 28*28)))
Y = Y_train[samp]
y = np.zeros((len(samp),10), np.float32)
y[range(y.shape[0]),Y] = -1.0
y = Tensor(y)
x = x.dot(l1)
x = x.relu()
x = x_l2 = x.dot(l2)
x = x.logsoftmax()
x = x.mul(y)
x = x.mean()
x.backward()
loss = x.data
cat = np.argmax(x_l2.data, axis=1)
accuracy = (cat == Y).mean()
# SGD
l1.data = l1.data - lr*l1.grad
l2.data = l2.data - lr*l2.grad
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
# numpy forward pass
def forward(x):
x = x.dot(l1.data)
x = np.maximum(x, 0)
x = x.dot(l2.data)
return x
def numpy_eval():
Y_test_preds_out = forward(X_test.reshape((-1, 28*28)))
Y_test_preds = np.argmax(Y_test_preds_out, axis=1)
return (Y_test == Y_test_preds).mean()
print("test set accuracy is %f" % numpy_eval())