tinygrad/test/test_tensor.py

159 lines
5.6 KiB
Python

import numpy as np
import torch
import unittest
import itertools
from tinygrad.tensor import Tensor, Device
from extra.gradcheck import numerical_jacobian, jacobian, gradcheck
x_init = np.random.randn(1,3).astype(np.float32)
U_init = np.random.randn(3,3).astype(np.float32)
V_init = np.random.randn(3,3).astype(np.float32)
W_init = np.random.randn(3,3).astype(np.float32)
m_init = np.random.randn(1,3).astype(np.float32)
class TestTinygrad(unittest.TestCase):
def test_plus_equals(self):
a = Tensor.randn(10,10)
b = Tensor.randn(10,10)
c = a + b
val1 = c.numpy()
a += b
val2 = a.numpy()
np.testing.assert_allclose(val1, val2)
def test_slicing(self):
x = Tensor.randn(10,10)
slices = [0,1,9,-1,-10,None] + [slice(s,e) for s,e in itertools.combinations([0,1,-1,None], r=2)] + [slice(9,11), slice(-11,-9)]
fmt = lambda s: f'{s.start}:{s.stop}' if isinstance(s, slice) else str(s)
for s in list(itertools.product(slices, slices)) + [(None,0,None,0,None), (slice(0,2),None,None,slice(2,4),None,None)]:
np.testing.assert_equal(x.numpy()[s], x[s].numpy(), f'Test failed for slice x[{",".join(fmt(x) for x in s)}]')
for s in [-11,10]:
with self.assertRaises(IndexError):
x[s]
with self.assertRaises(AssertionError):
x[::2]
with self.assertRaises(AssertionError):
x[0,0,0]
def test_backward_pass(self):
def test_tinygrad():
x = Tensor(x_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.log_softmax()
out = out.mul(m).add(m).sum()
out.backward()
return out.cpu().numpy(), x.grad.cpu().numpy(), W.grad.cpu().numpy()
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m).sum()
out.backward()
return out.detach().numpy(), x.grad, W.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_backward_pass_diamond_model(self):
def test_tinygrad():
u = Tensor(U_init, requires_grad=True)
v = Tensor(V_init, requires_grad=True)
w = Tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = out.log_softmax()
out = out.sum()
out.backward()
return out.cpu().numpy(), u.cpu().grad.numpy(), v.cpu().grad.numpy(), w.cpu().grad.numpy()
def test_pytorch():
u = torch.tensor(U_init, requires_grad=True)
v = torch.tensor(V_init, requires_grad=True)
w = torch.tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.sum()
out.backward()
return out.detach().numpy(), u.grad, v.grad, w.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_nograd(self):
x = Tensor(x_init, requires_grad=False)
m = Tensor(m_init, requires_grad=False)
W = Tensor(W_init, requires_grad=True)
tmp = x.mul(m)
mm = tmp.matmul(W)
out = mm.relu()
out = out.sum()
out.backward()
assert x.grad is None
assert m.grad is None
assert tmp.grad is None
assert mm.grad is not None
assert W.grad is not None
def test_dropout(self):
Tensor.training = True
n, rate = 1_000_000, 0.1
w = Tensor.ones(n).dropout(rate)
non_zeros = np.count_nonzero(w.cpu().numpy())
expected = n * (1 - rate)
np.testing.assert_allclose(non_zeros, expected, rtol=2e-3)
#@unittest.skipUnless(Device.DEFAULT == Device.CPU, "float64 not supported on GPU")
@unittest.skip("float64 support broken")
def test_jacobian(self):
W = np.random.RandomState(1337).random((10, 5))
x = np.random.RandomState(7331).random((1, 10)) - 0.5
torch_x = torch.tensor(x, requires_grad=True)
torch_W = torch.tensor(W, requires_grad=True)
torch_func = lambda x: torch.nn.functional.log_softmax(x.matmul(torch_W).relu(), dim=1)
PJ = torch.autograd.functional.jacobian(torch_func, torch_x).squeeze().numpy()
tiny_x = Tensor(x)
tiny_W = Tensor(W)
tiny_func = lambda x: x.dot(tiny_W).relu().log_softmax()
J = jacobian(tiny_func, tiny_x)
NJ = numerical_jacobian(tiny_func, tiny_x)
np.testing.assert_allclose(PJ, J, atol = 1e-5)
np.testing.assert_allclose(PJ, NJ, atol = 1e-5)
#@unittest.skipUnless(Device.DEFAULT == Device.CPU, "float64 not supported on GPU")
@unittest.skip("float64 support broken")
def test_gradcheck(self):
W = np.random.RandomState(1337).random((10, 5))
x = np.random.RandomState(7331).random((1, 10)) - 0.5
tiny_x = Tensor(x)
tiny_W = Tensor(W)
tiny_func = lambda x: x.dot(tiny_W).relu().log_softmax()
self.assertTrue(gradcheck(tiny_func, tiny_x))
# coarse approx. since a "big" eps and the non-linearities of the model
self.assertFalse(gradcheck(tiny_func, tiny_x, eps = 0.1))
def test_random_fns_are_deterministic_with_seed(self):
for random_fn in [Tensor.randn, Tensor.uniform, Tensor.scaled_uniform, Tensor.glorot_uniform]:
with self.subTest(msg=f"Tensor.{random_fn.__name__}"):
Tensor.manual_seed(1337)
a = random_fn(10,10).realize()
Tensor.manual_seed(1337)
b = random_fn(10,10).realize()
np.testing.assert_allclose(a.numpy(), b.numpy())
if __name__ == '__main__':
unittest.main()