mirror of https://github.com/commaai/tinygrad.git
76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
import math
|
|
import unittest
|
|
import numpy as np
|
|
from tinygrad.tensor import Tensor
|
|
|
|
# https://gist.github.com/devries/11405101
|
|
def ksprob(a):
|
|
fac, total, termbf = 2.0, 0.0, 0.0
|
|
a2 = -2.0 * a * a
|
|
for j in range(1, 101):
|
|
term = fac * math.exp(a2 * j * j)
|
|
total += term
|
|
if math.fabs(term) <= 0.001 * termbf or math.fabs(term) <= 1e-8 * total:
|
|
return total
|
|
fac = -fac
|
|
termbf = math.fabs(term)
|
|
return 1.0
|
|
|
|
def kstest(l1, l2):
|
|
n1, n2 = len(l1), len(l2)
|
|
l1.sort()
|
|
l2.sort()
|
|
j1, j2, d, fn1, fn2 = 0, 0, 0.0, 0.0, 0.0
|
|
while j1 < n1 and j2 < n2:
|
|
d1, d2 = l1[j1], l2[j2]
|
|
if d1 <= d2:
|
|
fn1 = (float(j1) + 1.0) / float(n1)
|
|
j1 += 1
|
|
if d2 <= d1:
|
|
fn2 = (float(j2) + 1.0) / float(n2)
|
|
j2 += 1
|
|
dtemp = math.fabs(fn2 - fn1)
|
|
if dtemp > d:
|
|
d = dtemp
|
|
ne = float(n1 * n2) / float(n1 + n2)
|
|
nesq = math.sqrt(ne)
|
|
prob = ksprob((nesq + 0.12 + 0.11 / nesq) * d)
|
|
return prob
|
|
|
|
def equal_distribution(tinygrad_func, numpy_func, shape=(20, 23), alpha=0.05):
|
|
Tensor.manual_seed(1337)
|
|
np.random.seed(1337)
|
|
x = tinygrad_func(*shape).cpu().numpy().flatten()
|
|
y = numpy_func(shape).flatten()
|
|
p = kstest(x, y)
|
|
return p >= alpha
|
|
|
|
def normal_test(func, shape=(20, 23), alpha=0.05):
|
|
y = lambda x: np.random.randn(*x)
|
|
p = equal_distribution(func, y, shape=shape, alpha=alpha)
|
|
return p >= alpha
|
|
|
|
class TestRandomness(unittest.TestCase):
|
|
def test_rand(self):
|
|
self.assertFalse(normal_test(Tensor.rand))
|
|
self.assertTrue(equal_distribution(Tensor.rand, lambda x: np.random.rand(*x)))
|
|
|
|
def test_randn(self):
|
|
self.assertTrue(normal_test(Tensor.randn))
|
|
self.assertFalse(equal_distribution(Tensor.randn, lambda x: np.random.rand(*x)))
|
|
|
|
def test_uniform(self):
|
|
self.assertFalse(normal_test(Tensor.uniform))
|
|
self.assertTrue(equal_distribution(Tensor.uniform, lambda x: np.random.rand(*x) * 2 - 1))
|
|
|
|
def test_scaled_uniform(self):
|
|
self.assertFalse(normal_test(Tensor.scaled_uniform))
|
|
self.assertTrue(equal_distribution(Tensor.scaled_uniform, lambda x: (np.random.rand(*x) * 2 - 1) / math.sqrt(math.prod(x))))
|
|
|
|
def test_glorot_uniform(self):
|
|
self.assertFalse(normal_test(Tensor.glorot_uniform))
|
|
self.assertTrue(equal_distribution(Tensor.glorot_uniform, lambda x: (np.random.rand(*x) * 2 - 1) * math.sqrt(6 / (x[0] + math.prod(x[1:])))))
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|