tinygrad/test/test_ops.py

550 lines
25 KiB
Python

import torch
import time
import numpy as np
import unittest
from tinygrad.tensor import Tensor
from tinygrad.helpers import getenv, IMAGE
FORWARD_ONLY = getenv("FORWARD_ONLY", 0)
def helper_test_op(shps, torch_fxn, tinygrad_fxn=None, atol=1e-6, rtol=1e-3, grad_atol=1e-4, grad_rtol=1e-3, forward_only=False, vals=None, a=-0.5, b=3):
if tinygrad_fxn is None: tinygrad_fxn = torch_fxn
torch.manual_seed(0)
np.random.seed(0)
if shps is None:
ts = [torch.tensor(x, requires_grad=True) for x in vals]
else:
ts = [torch.tensor((np.random.random(size=x).astype(np.float32)+a)*b, requires_grad=True) for x in shps]
tst = [Tensor(x.detach().numpy(), requires_grad=not FORWARD_ONLY) for x in ts]
st = time.monotonic()
out = torch_fxn(*ts)
torch_fp = time.monotonic() - st
st = time.monotonic()
ret = tinygrad_fxn(*tst).realize()
tinygrad_fp = time.monotonic() - st
def compare(s, x,y,atol,rtol):
if y.shape != tuple(): assert x.shape == y.shape, f"shape mismatch (tinygrad){x.shape} != (torch){y.shape}"
try:
np.testing.assert_allclose(x,y, atol=atol, rtol=rtol)
except Exception:
raise Exception(f"{s} failed shape {x.shape}")
compare("forward pass", ret.numpy(), out.detach().numpy(), atol=atol, rtol=rtol)
torch_fbp, tinygrad_fbp = np.nan, np.nan
if not forward_only and not FORWARD_ONLY:
st = time.monotonic()
out.square().mean().backward()
torch_fbp = time.monotonic() - st
st = time.monotonic()
ret.square().mean().backward()
for tt in tst: tt.grad.realize()
tinygrad_fbp = time.monotonic() - st
for i, (t, tt) in enumerate(zip(ts, tst)):
compare(f"backward pass tensor {i}", tt.grad.numpy(), t.grad.detach().numpy(), atol=grad_atol, rtol=grad_rtol)
print("\ntesting %40r torch/tinygrad fp: %.2f / %.2f ms bp: %.2f / %.2f ms " % (shps, torch_fp*1000, tinygrad_fp*1000, torch_fbp*1000, tinygrad_fbp*1000), end="")
class TestOps(unittest.TestCase):
def test_zeros(self):
helper_test_op([], lambda: torch.zeros(45,65), lambda: Tensor.zeros(45,65), forward_only=True)
def test_ones(self):
helper_test_op([], lambda: torch.ones(45,65), lambda: Tensor.ones(45,65), forward_only=True)
def test_eye(self):
helper_test_op([], lambda: torch.eye(10), lambda: Tensor.eye(10), forward_only=True)
def test_arange(self):
helper_test_op([], lambda: torch.arange(10), lambda: Tensor.arange(10), forward_only=True)
def _test_cmp(self, fxn, reverse=True):
for shps in [[(3, 4, 5), (3, 4, 5)], [(3, 4, 5), (5,)], [(5,), (3, 4, 5)]]:
helper_test_op(shps, fxn, fxn, forward_only=True)
helper_test_op(None, fxn, fxn, forward_only=True, vals=[[0.,1,2], [2.,1,0]])
helper_test_op(None, lambda x,y: fxn(x,2), lambda x,y: fxn(x,2), forward_only=True, vals=[[0.,1,2], [2.,1,0]])
if reverse: helper_test_op(None, lambda x,y: fxn(2,y), lambda x,y: fxn(2,y), forward_only=True, vals=[[0.,1,2], [2.,1,0]])
def test_cmp_eq(self): self._test_cmp(lambda x,y: x.eq(y), reverse=False)
def test_cmp_gt(self): self._test_cmp(lambda x,y: x>y)
def test_cmp_ge(self): self._test_cmp(lambda x,y: x>=y)
def test_cmp_lt(self): self._test_cmp(lambda x,y: x<y)
def test_cmp_le(self): self._test_cmp(lambda x,y: x<=y)
def test_cmp_eq_backwards(self):
t1 = torch.ones(4, requires_grad=True)
t2 = torch.ones(4, requires_grad=True)
self.assertRaises(RuntimeError, (t1 == t2).sum().backward)
tt1 = Tensor.ones(4, requires_grad=True)
tt2 = Tensor.ones(4, requires_grad=True)
self.assertRaises(RuntimeError, (tt1.eq(tt2)).sum().backward)
def test_cmp_lt_backwards(self):
t1 = torch.ones(4, requires_grad=True)
t2 = torch.ones(4, requires_grad=True)
self.assertRaises(RuntimeError, (t1 < t2).sum().backward)
tt1 = Tensor.ones(4, requires_grad=True)
tt2 = Tensor.ones(4, requires_grad=True)
self.assertRaises(RuntimeError, (tt1 < tt2).sum().backward)
def test_maximum(self):
helper_test_op([(45,65), (45,65)], torch.maximum, Tensor.maximum)
def test_minimum(self):
helper_test_op([(45,65), (45,65)], torch.minimum, Tensor.minimum)
def test_add(self):
helper_test_op([(45,65), (45,65)], lambda x,y: x+y, Tensor.add)
def test_add_simple(self):
helper_test_op([(256), (256)], lambda x,y: x+y, Tensor.add, forward_only=True)
def test_broadcasted_add(self):
helper_test_op([(45,65), (45,1)], lambda x,y: x+y, lambda x,y: x+y)
def test_broadcasted_add_2(self):
helper_test_op([(45,65), (65,)], lambda x,y: x+y, lambda x,y: x+y)
def test_sub(self):
helper_test_op([(45,65), (45,65)], lambda x,y: x-y, Tensor.sub)
def test_mul(self):
helper_test_op([(64,64), (64,64)], lambda x,y: x*y, Tensor.mul)
def test_div(self):
helper_test_op([(45,65), (45,65)], lambda x,y: x/y, Tensor.div)
def test_div_const(self):
helper_test_op([(45,65)], lambda x: x/255, lambda x: x/255)
helper_test_op([(45,65)], lambda x: x/1, lambda x: x/1)
helper_test_op([(45,65)], lambda x: 1/x, lambda x: 1/x)
helper_test_op([(45,65)], lambda x: x/2, lambda x: x/2)
helper_test_op([(45,65)], lambda x: 2/x, lambda x: 2/x)
def test_pow(self):
helper_test_op([(45,65)], lambda x: x**2, lambda x: Tensor.pow(x,2), a=0)
helper_test_op([(45,65)], lambda x: x**3, lambda x: Tensor.pow(x,3), a=0)
helper_test_op([(45,65)], lambda x: x**-2, lambda x: Tensor.pow(x,-2), a=0)
helper_test_op([(45,65), (45,65)], lambda x,y: x**y, Tensor.pow, a=0)
def test_pow_const(self):
helper_test_op([(45,65)], lambda x: x**1.0, lambda x: x**1.0)
helper_test_op([(45,65)], lambda x: 1.0**x, lambda x: 1.0**x)
helper_test_op([(45,65)], lambda x: x**2.0, lambda x: x**2.0)
helper_test_op([(45,65)], lambda x: 2.0**x, lambda x: 2.0**x)
def test_sqrt(self):
helper_test_op([(45,65)], lambda x: x.sqrt(), Tensor.sqrt, a=0)
def test_relu(self):
helper_test_op([(45,65)], lambda x: x.relu(), Tensor.relu)
def test_leakyrelu(self):
helper_test_op([(45,65)], lambda x: torch.nn.functional.leaky_relu(x,0.01), Tensor.leakyrelu)
def test_abs(self):
helper_test_op([(45,65)], lambda x: torch.abs(x), Tensor.abs)
def test_log(self):
helper_test_op([(45,65)], lambda x: torch.log(x), Tensor.log)
def test_exp(self):
helper_test_op([(45,65)], lambda x: torch.exp(x), Tensor.exp)
def test_sign(self):
helper_test_op([(45,65)], lambda x: torch.sign(x), Tensor.sign)
def test_sigmoid(self):
helper_test_op([(45,65)], lambda x: x.sigmoid(), Tensor.sigmoid)
def test_softplus(self):
helper_test_op([(45,65)], lambda x: torch.nn.functional.softplus(x), Tensor.softplus, atol=1e-6, grad_atol=1e-6)
@unittest.skip("not supported in older pytorch")
def test_gelu(self):
helper_test_op([(45,65)], lambda x: torch.nn.functional.gelu(x, approximate="tanh"), Tensor.gelu)
def test_quick_gelu(self):
helper_test_op([(45,65)], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu)
def test_elu(self):
helper_test_op([(45,65)], lambda x: torch.nn.functional.elu(x), Tensor.elu)
helper_test_op([(45,65)], lambda x: torch.nn.functional.elu(x, alpha=0.1), lambda x: Tensor.elu(x, alpha=0.1))
def test_relu6(self):
helper_test_op([(45,65)], lambda x: torch.nn.functional.relu6(x), Tensor.relu6)
def test_hardswish(self):
helper_test_op([(45,65)], lambda x: torch.nn.functional.hardswish(x), Tensor.hardswish, atol=1e-6, grad_atol=1e-6)
def test_mish(self):
def _mish_pytorch(x):
return x*torch.tanh(torch.nn.functional.softplus(x))
helper_test_op([(45,65)], _mish_pytorch, Tensor.mish, atol=1e-4)
def test_dot(self):
helper_test_op([(45,65), (65,100)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
def test_matmul_simple(self):
helper_test_op([(4), (4,4)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
def test_matmul(self):
helper_test_op([(64), (64,99)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
def test_gemm(self):
helper_test_op([(64,64), (64,64)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-3)
def test_broadcastdot(self):
helper_test_op([(10,45,65), (65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4)
def test_multidot(self):
helper_test_op([(10,45,65), (10,65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4)
helper_test_op([(3,3,45,65), (3,3,65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4)
def test_sum_simple(self):
helper_test_op(None, lambda x: x.sum(), Tensor.sum, vals=[[1.,1.]])
def test_sum_full(self):
helper_test_op([(16384)], lambda x: x.sum(), lambda x: x.sum())
def test_sum_relu(self):
helper_test_op([(3,4,5)], lambda x: x.relu().sum().relu(), lambda x: x.relu().sum().relu())
def test_sum(self):
helper_test_op([(45,3)], lambda x: x.sum(), Tensor.sum)
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=3), lambda x: Tensor.sum(x, axis=3))
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(1,3)), lambda x: Tensor.sum(x, axis=(1,3)))
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(0,2)), lambda x: Tensor.sum(x, axis=(0,2)))
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(1,2)), lambda x: Tensor.sum(x, axis=(1,2)))
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=1), lambda x: Tensor.sum(x, axis=1))
def test_min(self):
helper_test_op([(3,3)], lambda x: x.min(), Tensor.min)
helper_test_op([(45,3)], lambda x: x.min(), Tensor.min)
helper_test_op([(45,3)], lambda x: x.min().mul(0.5), lambda x: Tensor.min(x).mul(0.5))
def test_max(self):
helper_test_op([(45,3)], lambda x: x.max(), Tensor.max)
helper_test_op([(45,3)], lambda x: x.max().mul(0.5), lambda x: Tensor.max(x).mul(0.5))
helper_test_op(None, lambda x: x.max().mul(0.5), lambda x: Tensor.max(x).mul(0.5),
vals=[
[[1.0,1.0,0.0,1.0]],
])
helper_test_op([(3,4,5,6)], lambda x: x.max(axis=1)[0], lambda x: Tensor.max(x, axis=1))
def test_mean_axis(self):
helper_test_op([(3,4,5,6)], lambda x: x.mean(axis=(1,2)), lambda x: Tensor.mean(x, axis=(1,2)))
def test_log_softmax(self):
helper_test_op([(45,65)], lambda x: torch.nn.LogSoftmax(dim=1)(x), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7)
def test_log_softmax_other_axis(self):
helper_test_op([(10,10,10)], lambda x: x.log_softmax(0), lambda x: x.log_softmax(0), atol=1e-7, grad_atol=1e-7)
helper_test_op([(10,10,10)], lambda x: x.log_softmax(1), lambda x: x.log_softmax(1), atol=1e-7, grad_atol=1e-7)
helper_test_op([(10,10,10)], lambda x: x.log_softmax(2), lambda x: x.log_softmax(2), atol=1e-7, grad_atol=1e-7)
def test_tanh(self):
helper_test_op([(45,65)], lambda x: x.tanh(), Tensor.tanh, atol=1e-6, grad_atol=1e-6)
def test_topo_sort(self):
helper_test_op([(45,65)], lambda x: (x+x)*x, lambda x: x.add(x).mul(x), atol=1e-6, grad_atol=1e-6)
def test_scalar_mul(self):
helper_test_op([(45,65)], lambda x: x*2, lambda x: x*2)
def test_scalar_rmul(self):
helper_test_op([(45,65)], lambda x: 2*x, lambda x: 2*x)
def test_scalar_sub(self):
helper_test_op([(45,65)], lambda x: x-2, lambda x: x-2)
def test_scalar_rsub(self):
helper_test_op([(45,65)], lambda x: 2-x, lambda x: 2-x)
def test_broadcast_full(self):
for torch_op, tinygrad_op in [(torch.add, Tensor.add), (torch.sub, Tensor.sub), (torch.mul, Tensor.mul),
(torch.div, Tensor.div), (torch.pow, Tensor.pow)]:
for shapes in [((5,13,24,16), (5,1,24,1)), ((1,3,1,7,1), (2,1,5,1,8))]:
with self.subTest(op=torch_op.__name__, shapes=shapes):
helper_test_op(shapes, torch_op, tinygrad_op, a=-0.5 if tinygrad_op != Tensor.pow else 0.0)
def test_broadcast_simple(self):
helper_test_op([(45,65), (45,1)], lambda x,y: x/y, lambda x,y: x/y)
def test_broadcast_partial(self):
for torch_op, tinygrad_op in [(torch.add, Tensor.add), (torch.sub, Tensor.sub), (torch.mul, Tensor.mul),
(torch.div, Tensor.div), (torch.pow, Tensor.pow)]:
for shapes in [((1,32,32,32), (1,32,1,1)), ((5,13,24,16,2), (1,13,24,1,1)),
((4,1), (4,5)), ((1,4), (5,4))]:
with self.subTest(op=torch_op.__name__, shapes=shapes):
# NOTE: ANE backwards?
helper_test_op(shapes, torch_op, tinygrad_op, a=-0.5 if tinygrad_op != Tensor.pow else 0.0)
def test_slice_simple(self):
helper_test_op([(3,3)], lambda x: x[1:2, 1:2], lambda x: x[1:2, 1:2])
def test_slice(self):
helper_test_op([(3,3,3,3)], lambda x: x[1:2], lambda x: x[1:2])
helper_test_op([(3,3,3,3)], lambda x: x[1:2, 1:2], lambda x: x[1:2, 1:2])
helper_test_op([(3,3,3,3)], lambda x: x[1:2, 1:2, 0:-1], lambda x: x[1:2, 1:2, 0:-1])
def test_slice_one(self):
helper_test_op([(3)], lambda x: x[1], lambda x: x[1])
def test_slice_one_multi(self):
helper_test_op([(10,10)], lambda x: x[1], lambda x: x[1])
def test_pad2d(self):
helper_test_op([(3,3,3,3)], lambda x: torch.nn.functional.pad(x, (1,2,3,4)), lambda x: x.pad2d(padding=(1,2,3,4)))
def test_transpose(self):
helper_test_op([(3,3,3)], lambda x: x.transpose(1,2), lambda x: x.transpose(1,2))
helper_test_op([(3,3,3)], lambda x: x.transpose(0,2), lambda x: x.transpose(0,2))
helper_test_op([(1,2,3,4)], lambda x: x.movedim((3,0,2,1),(0,1,2,3)), lambda x: x.permute(order=(3,0,2,1)))
helper_test_op([(3,4,5,6)], lambda x: x.movedim((3,2,1,0),(0,1,2,3)), lambda x: x.permute(order=(3,2,1,0)))
def test_reshape(self):
helper_test_op([(4,3,6,6)], lambda x: torch.reshape(x, (-1,3,6,6)), lambda x: x.reshape(shape=(-1,3,6,6)))
helper_test_op([(4,3,6,6)], lambda x: torch.reshape(x, (-1,1,6,6)), lambda x: x.reshape(shape=(-1,1,6,6)))
def test_flip(self):
helper_test_op([(4,3,6,6)], lambda x: torch.flip(x, (0,)), lambda x: x.flip(axis=(0,)))
helper_test_op([(4,3,6,6)], lambda x: torch.flip(x, (0,1)), lambda x: x.flip(axis=(0,1)))
helper_test_op([(4,3,6,6)], lambda x: torch.flip(x, (0,1,3)), lambda x: x.flip(axis=(0,1,3)))
helper_test_op([(4,3,6,6)], lambda x: torch.flip(x, (3,)), lambda x: x.flip(axis=(3,)))
def test_unsqueeze(self):
helper_test_op([(4,3,6,6)], lambda x: torch.unsqueeze(x, 0), lambda x: x.unsqueeze(dim=0))
helper_test_op([(4,3,6,6)], lambda x: torch.unsqueeze(x, 4), lambda x: x.unsqueeze(dim=4))
helper_test_op([(4,3,6,6)], lambda x: torch.unsqueeze(x, -1), lambda x: x.unsqueeze(dim=-1))
helper_test_op([(4,3,6,6)], lambda x: torch.unsqueeze(x, -3), lambda x: x.unsqueeze(dim=-3))
def test_flatten(self):
for axis in range(3):
helper_test_op([(4,3,6,6)], lambda x: torch.flatten(x, start_dim=axis), lambda x: x.flatten(axis))
def test_detach(self):
helper_test_op([(4,3,6,6)], lambda x: x.detach(), lambda x: x.detach(), forward_only=True)
def test_expand(self):
arg = (4,3,2,6)
helper_test_op([(4,3,1,6)], lambda x: x.expand(arg), lambda x: x.expand(shape=arg))
@unittest.skip("very slow")
def test_sd_big_conv(self):
# internal shape (1, 1, 512, 62, 62, 512, 3, 3) overflows a int
helper_test_op([(1,256,64,64), (512,256,3,3)],
lambda x,w: torch.nn.functional.conv2d(x, w),
lambda x,w: x.conv2d(w), atol=1e-2)
@unittest.skip("not supported with IMAGE=1")
def test_large_bs_conv(self):
# large batch size can cause OpenCL image to exceed max image height on macOS
# (or cause the conv kernel to overflow short sampling coords)
helper_test_op([(4096,3,3,3), (1,3,3,3)],
lambda x,w: torch.nn.functional.conv2d(x, w),
lambda x,w: x.conv2d(w), atol=1e-4, rtol=1e-2)
@unittest.skip("not supported with IMAGE=1")
def test_large_ic_conv(self):
# large input channel count can cause OpenCL image to exceed max image width on macOS
helper_test_op([(1,2048,3,3), (1,2048,3,3)],
lambda x,w: torch.nn.functional.conv2d(x, w),
lambda x,w: x.conv2d(w), atol=1e-4)
def test_biased_conv2d(self):
C = 8
helper_test_op([(1,C,5,5), (C,C,1,1), (C,)],
lambda x,w,b: torch.nn.functional.conv2d(torch.nn.functional.conv2d(x,w,b).relu(),w,b),
lambda x,w,b: Tensor.conv2d(x,w,b).relu().conv2d(w,b), atol=1e-4)
def test_simple_conv2d(self):
helper_test_op([(1,4,9,9), (4,4,3,3)],
lambda x,w: torch.nn.functional.conv2d(x,w).relu(),
lambda x,w: Tensor.conv2d(x,w).relu(), atol=1e-4, grad_rtol=1e-5)
def test_simple_conv2d_1x1(self):
helper_test_op([(1,4,9,9), (4,4,1,1)],
lambda x,w: torch.nn.functional.conv2d(x,w).relu(),
lambda x,w: Tensor.conv2d(x,w).relu(), atol=1e-4, grad_rtol=1e-5)
def test_nested_conv2d(self):
helper_test_op([(1,32,9,9), (32,32,3,3), (32,32,3,3)],
lambda x,w1,w2: torch.nn.functional.conv2d(torch.nn.functional.conv2d(x,w1).relu(), w2).relu(),
lambda x,w1,w2: x.conv2d(w1).relu().conv2d(w2).relu(), atol=1e-4, grad_rtol=1e-5)
# expect reduce nodes == 3
def test_simple_conv2d_nhwc(self):
# weights (from tf): filter_height x filter_width x in_channels x out_channels
helper_test_op([(2,9,9,10), (3,3,10,20)],
lambda x,w: torch.nn.functional.conv2d(x.permute(0,3,1,2),w.permute(3,2,0,1)).relu(),
lambda x,w: Tensor.conv2d(x.permute(0,3,1,2),w.permute(3,2,0,1)).relu(), atol=1e-4, grad_rtol=1e-5)
def test_simple_conv2d_batched(self):
helper_test_op([(2,4,9,9), (4,4,3,3)],
lambda x,w: torch.nn.functional.conv2d(x,w).relu(),
lambda x,w: Tensor.conv2d(x,w).relu(), atol=1e-4, grad_rtol=1e-5)
def test_conv2d(self):
for bs in [1,8]:
for cin in [1,3]:
for groups in [1,3] if cin == 3 else [1]:
for H in [1,2,5]:
for W in [1,2,3,5]:
with self.subTest(batch_size=bs, channels=cin, groups=groups, height=H, width=W):
helper_test_op([(bs,cin,11,28), (6,cin//groups,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(),
lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-4, grad_rtol=1e-5)
def test_large_input_conv2d(self):
bs = 4
cin = 16
groups = 1
H = 5
W = 2
helper_test_op([(bs,cin,64,64), (6,cin//groups,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(),
# needed to relax tolerance on NVIDIA
lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-3, grad_rtol=1e-5)
def test_simple_grouped_conv2d(self):
bs = 1
groups = 2
rcout = 1
cin = 2
helper_test_op([(bs,groups*cin,1,1), (groups*rcout,cin,1,1)],
lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(),
lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-4, grad_rtol=1e-5, forward_only=IMAGE>=2)
def test_medium_grouped_conv2d(self):
bs = 1
groups = 2
rcout = 2
cin = 2
helper_test_op([(bs,groups*cin,1,1), (groups*rcout,cin,1,1)],
lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(),
lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-4, grad_rtol=1e-5, forward_only=IMAGE>=2)
def test_depthwise_conv2d(self):
bs = 1
groups = 32
rcout = 1
cin = 1
helper_test_op([(bs,groups*cin,32,32), (groups*rcout,cin,1,1)],
lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(),
lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-4, grad_rtol=1e-5)
def test_grouped_conv2d(self):
bs = 4
groups = 5
rcout = 7
cin = 3
helper_test_op([(bs,groups*cin,5,5), (groups*rcout,cin,3,3)],
lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(),
lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-4, grad_rtol=1e-5)
def test_fancy_conv2d(self):
bs = 2
cin = 3
cout = 1
groups = 3
H,W = 3,3
helper_test_op([(bs,cin,11,28), (groups*cout,cin//groups,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(),
lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=1e-4, grad_rtol=1e-5)
def test_strided_conv2d_simple(self):
bs,H,W = 2,3,1
helper_test_op([(bs,1,5,1), (1,1,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,stride=2).relu(),
lambda x,w: Tensor.conv2d(x,w,stride=2).relu(), atol=1e-4)
def test_strided_conv2d(self):
bs = 4
cin = 3
H,W = 3,3
with self.subTest(stride := 2):
helper_test_op([(bs,cin,11,28), (4,cin,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,stride=2).relu(),
lambda x,w: Tensor.conv2d(x,w,stride=stride).relu(), atol=1e-4)
with self.subTest(stride := (2,1)):
helper_test_op([(bs,cin,11,28), (4,cin,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,stride=stride).relu(),
lambda x,w: Tensor.conv2d(x,w,stride=(2,1)).relu(), atol=1e-4)
def test_negative_padding_conv2d(self):
n,k = 10, 3
helper_test_op([(1,1,n,n), (1,1,k,k)],
lambda x,w: torch.nn.functional.conv2d(x[:, :, 1:-1, 1:-1],w).relu(),
lambda x,w: Tensor.conv2d(x,w,padding=-1).relu(), atol=1e-4)
helper_test_op([(1,1,n,n), (1,1,k,k)],
lambda x,w: torch.nn.functional.conv2d(x[:, :, 1:, 1:],w).relu(),
lambda x,w: Tensor.conv2d(x,w,padding=(-1,0,-1,0)).relu(), atol=1e-4)
def test_simple_padding_conv2d(self):
p = (1,1,1,1)
helper_test_op(None,
lambda x,w: torch.nn.functional.conv2d(torch.nn.functional.pad(x, p),w).relu(),
lambda x,w: Tensor.conv2d(x,w,padding=p).relu(), atol=1e-4, vals=[[[[[2.,3.]]]], [[[[1.]]]]])
def test_asymmetric_padding_conv2d(self):
for p in [(0,1,0,1), (2,1,2,1), (2,0,2,1)]:
with self.subTest(padding := p):
for n in [3,4]:
for k in [2]:
helper_test_op([(1,1,n,n), (1,1,k,k)],
lambda x,w: torch.nn.functional.conv2d(torch.nn.functional.pad(x, p),w).relu(),
lambda x,w: Tensor.conv2d(x,w,padding=p).relu(), atol=1e-4)
helper_test_op([(1,1,n,n), (1,1,k,k)],
lambda x,w: torch.nn.functional.conv2d(torch.nn.functional.pad(x, p),w).relu(),
lambda x,w: Tensor.conv2d(x,w,padding=p).relu(), atol=1e-4)
def test_padded_conv2d(self):
bs = 4
cin = 3
H,W = 3,3
for p in [2, (2,1), (2,2)]:
with self.subTest(padding := p):
helper_test_op([(bs,cin,11,28), (4,cin,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,padding=padding).relu(),
lambda x,w: Tensor.conv2d(x,w,padding=padding).relu(), atol=1e-4)
def test_padded_conv2d_bs1(self):
bs = 1
cin = 3
H,W = 3,3
padding = 1
helper_test_op([(bs,cin,11,28), (4,cin,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,padding=padding).relu(),
lambda x,w: Tensor.conv2d(x,w,padding=padding).relu(), atol=1e-4)
def test_dilated_conv2d(self):
bs = 4
cin = 3
H,W = 3,3
for d in [2, (2,1)]:
with self.subTest(dilation := d):
helper_test_op([(bs,cin,11,28), (4,cin,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,dilation=dilation).relu(),
lambda x,w: Tensor.conv2d(x,w,dilation=dilation).relu(), atol=1e-4)
def test_maxpool2d_simple(self):
ksz = (2,2)
helper_test_op([(1,1,2,3)],
lambda x: torch.nn.functional.max_pool2d(x, kernel_size=ksz),
lambda x: Tensor.max_pool2d(x, kernel_size=ksz))
def test_maxpool2d(self):
for ksz in [(2,2), (3,3), 2, 3, (3,2), (5,5), (5,1)]:
with self.subTest(kernel_size=ksz):
helper_test_op([(32,2,110,28)],
lambda x: torch.nn.functional.max_pool2d(x, kernel_size=ksz),
lambda x: Tensor.max_pool2d(x, kernel_size=ksz))
def test_maxpool2d_bigger_stride(self):
for stride in [(2,3), (3,2), 2, 3]:
with self.subTest(stride=stride):
helper_test_op([(32,2,110,28)],
lambda x: torch.nn.functional.max_pool2d(x, kernel_size=(2,2), stride=stride),
lambda x: Tensor.max_pool2d(x, kernel_size=(2,2), stride=stride))
def test_maxpool2d_unit_stride(self):
helper_test_op([(32,2,110,28)],
lambda x: torch.nn.functional.max_pool2d(x, kernel_size=(5,5), stride=1),
lambda x: Tensor.max_pool2d(x, kernel_size=(5,5), stride=1))
def test_maxpool2d_smaller_stride(self):
for stride in [(2,3), (3,2), 2, 3]:
with self.subTest(stride=stride):
helper_test_op([(32,2,110,28)],
lambda x: torch.nn.functional.max_pool2d(x, kernel_size=(5,5), stride=stride),
lambda x: Tensor.max_pool2d(x, kernel_size=(5,5), stride=stride))
def test_avgpool2d(self):
shape = (32,2,111,28)
for ksz in [(2,2), (3,3), (3,2), (5,5), (5,1)]:
with self.subTest(kernel_size=ksz):
helper_test_op([shape],
lambda x: torch.nn.functional.avg_pool2d(x, kernel_size=ksz),
lambda x: Tensor.avg_pool2d(x, kernel_size=ksz), rtol=1e-5)
def test_global_avgpool2d(self):
helper_test_op([(32,2,111,28)],
lambda x: torch.nn.functional.avg_pool2d(x, kernel_size=(111,28)),
lambda x: Tensor.avg_pool2d(x, kernel_size=(111,28)), rtol=1e-5)
def test_cat(self):
for dim in range(-1, 2):
helper_test_op([(45,65), (45,65)], lambda x,y: torch.cat((x,y), dim), lambda x,y: x.cat(y, dim=dim))
def test_multicat(self):
for dim in range(-1, 2):
helper_test_op([(45,65), (45,65), (45,65)], lambda x,y,z: torch.cat((x,y,z), dim), lambda x,y,z: x.cat(y, z, dim=dim))
def test_clip(self):
helper_test_op([(45,65)], lambda x: x.clip(-2.3, 1.2), lambda x: x.clip(-2.3, 1.2))
def test_matvec(self):
helper_test_op([(1,128), (128,128), (128,128)], lambda x,y,z: (x@y).relu()@z, atol=1e-4)
if __name__ == '__main__':
np.random.seed(1337)
unittest.main(verbosity=2)