mirror of https://github.com/commaai/tinygrad.git
83 lines
2.8 KiB
Python
83 lines
2.8 KiB
Python
import json
|
|
import pathlib
|
|
import numpy as np
|
|
import librosa
|
|
import soundfile
|
|
|
|
"""
|
|
The dataset has to be downloaded manually from https://www.openslr.org/12/ and put in `extra/datasets/librispeech`.
|
|
For mlperf validation the dev-clean dataset is used.
|
|
|
|
Then all the flacs have to be converted to wav using something like:
|
|
```fish
|
|
for file in $(find * | grep flac); do ffmpeg -i $file -ar 16k "$(dirname $file)/$(basename $file .flac).wav"; done
|
|
```
|
|
|
|
Then this [file](https://github.com/mlcommons/inference/blob/master/speech_recognition/rnnt/dev-clean-wav.json) has to also be put in `extra/datasets/librispeech`.
|
|
"""
|
|
BASEDIR = pathlib.Path(__file__).parent / "librispeech"
|
|
with open(BASEDIR / "dev-clean-wav.json") as f:
|
|
ci = json.load(f)
|
|
|
|
FILTER_BANK = np.expand_dims(librosa.filters.mel(sr=16000, n_fft=512, n_mels=80, fmin=0, fmax=8000), 0)
|
|
WINDOW = librosa.filters.get_window("hann", 320)
|
|
|
|
def feature_extract(x, x_lens):
|
|
x_lens = np.ceil((x_lens / 160) / 3).astype(np.int32)
|
|
|
|
# pre-emphasis
|
|
x = np.concatenate((np.expand_dims(x[:, 0], 1), x[:, 1:] - 0.97 * x[:, :-1]), axis=1)
|
|
|
|
# stft
|
|
x = librosa.stft(x, n_fft=512, window=WINDOW, hop_length=160, win_length=320, center=True, pad_mode="reflect")
|
|
x = np.stack((x.real, x.imag), axis=-1)
|
|
|
|
# power spectrum
|
|
x = (x**2).sum(-1)
|
|
|
|
# mel filter bank
|
|
x = np.matmul(FILTER_BANK, x)
|
|
|
|
# log
|
|
x = np.log(x + 1e-20)
|
|
|
|
# feature splice
|
|
seq = [x]
|
|
for i in range(1, 3):
|
|
tmp = np.zeros_like(x)
|
|
tmp[:, :, :-i] = x[:, :, i:]
|
|
seq.append(tmp)
|
|
features = np.concatenate(seq, axis=1)[:, :, ::3]
|
|
|
|
# normalize
|
|
features_mean = np.zeros((features.shape[0], features.shape[1]), dtype=np.float32)
|
|
features_std = np.zeros((features.shape[0], features.shape[1]), dtype=np.float32)
|
|
for i in range(features.shape[0]):
|
|
features_mean[i, :] = features[i, :, :x_lens[i]].mean(axis=1)
|
|
features_std[i, :] = features[i, :, :x_lens[i]].std(axis=1, ddof=1)
|
|
features_std += 1e-5
|
|
features = (features - np.expand_dims(features_mean, 2)) / np.expand_dims(features_std, 2)
|
|
|
|
return features.transpose(2, 0, 1), x_lens.astype(np.float32)
|
|
|
|
def load_wav(file):
|
|
sample = soundfile.read(file)[0].astype(np.float32)
|
|
return sample, sample.shape[0]
|
|
|
|
def iterate(bs=1, start=0):
|
|
print(f"there are {len(ci)} samples in the dataset")
|
|
for i in range(start, len(ci), bs):
|
|
samples, sample_lens = zip(*[load_wav(BASEDIR / v["files"][0]["fname"]) for v in ci[i : i + bs]])
|
|
samples = list(samples)
|
|
# pad to same length
|
|
max_len = max(sample_lens)
|
|
for j in range(len(samples)):
|
|
samples[j] = np.pad(samples[j], (0, max_len - sample_lens[j]), "constant")
|
|
samples, sample_lens = np.array(samples), np.array(sample_lens)
|
|
|
|
yield feature_extract(samples, sample_lens), np.array([v["transcript"] for v in ci[i : i + bs]])
|
|
|
|
if __name__ == "__main__":
|
|
X, Y = next(iterate())
|
|
print(X[0].shape, Y.shape)
|