tinygrad/extra/optimization/rl.py

77 lines
2.6 KiB
Python

import os
import numpy as np
import math, random
from tinygrad.tensor import Tensor
from tinygrad.nn.state import get_parameters, get_state_dict, safe_save, safe_load, load_state_dict
from tinygrad.features.search import actions, bufs_from_lin, time_linearizer, get_linearizer_actions
from tinygrad.nn.optim import Adam
from extra.optimization.extract_policynet import PolicyNet
from extra.optimization.helpers import load_worlds, ast_str_to_lin, lin_to_feats
if __name__ == "__main__":
net = PolicyNet()
if os.path.isfile("/tmp/policynet.safetensors"): load_state_dict(net, safe_load("/tmp/policynet.safetensors"))
optim = Adam(get_parameters(net))
ast_strs = load_worlds()
# select a world
all_feats, all_acts, all_rews = [], [], []
while 1:
Tensor.no_grad, Tensor.training = True, False
lin = ast_str_to_lin(random.choice(ast_strs))
rawbufs = bufs_from_lin(lin)
tm = last_tm = base_tm = time_linearizer(lin, rawbufs)
# take actions
feats, acts, rews = [], [], []
while 1:
feat = lin_to_feats(lin)
feats.append(feat)
probs = net(Tensor([feat])).exp()[0].numpy()
# mask valid actions
valid_action_mask = np.zeros((len(actions)+1), dtype=np.float32)
for x in get_linearizer_actions(lin): valid_action_mask[x] = 1
probs *= valid_action_mask
probs /= sum(probs)
act = np.random.choice(len(probs), p=probs)
acts.append(act)
if act == 0:
rews.append(0)
break
try:
lin.apply_opt(actions[act-1])
tm = time_linearizer(lin, rawbufs)
if math.isinf(tm): raise Exception("failed")
rews.append(((last_tm-tm)/base_tm))
last_tm = tm
except Exception:
rews.append(-0.5)
break
#print(f"{tm*1e6:10.2f}", lin.colored_shape())
assert len(feats) == len(acts) and len(acts) == len(rews)
#print(rews)
print(f"***** EPISODE {len(rews)} steps, {sum(rews):5.2f} reward, {base_tm*1e6:12.2f} -> {tm*1e6:12.2f} : {lin.colored_shape()}")
all_feats += feats
all_acts += acts
# rewards to go
for i in range(len(rews)-2, -1, -1): rews[i] += rews[i+1]
all_rews += rews
BS = 32
if len(all_feats) >= BS:
Tensor.no_grad, Tensor.training = False, True
x = Tensor(all_feats[:BS])
mask = np.zeros((BS, len(actions)+1), dtype=np.float32)
mask[range(BS), all_acts[:BS]] = all_rews[:BS]
loss = -(net(x) * Tensor(mask)).mean()
optim.zero_grad()
loss.backward()
optim.step()
all_feats = all_feats[BS:]
all_acts = all_acts[BS:]
all_rews = all_rews[BS:]