tinygrad/test/test_multitensor.py

688 lines
27 KiB
Python

import unittest, functools, random
from typing import List
from tinygrad import Tensor, Device, nn, GlobalCounters, TinyJit
from tinygrad.device import BufferCopy
from tinygrad.ops import LoadOps, ReduceOps
from tinygrad.helpers import CI, prod, Context
from tinygrad.nn.state import get_parameters, get_state_dict
from tinygrad.engine.schedule import create_schedule
from tinygrad.features.multi import all_reduce, MultiLazyBuffer
from random import randint
import numpy as np
from hypothesis import given, strategies as strat, settings
settings.register_profile("my_profile", max_examples=200, deadline=None)
settings.load_profile("my_profile")
d_zero = f"{Device.DEFAULT}:0"
d0, d1 = f"{Device.DEFAULT}:1", f"{Device.DEFAULT}:2"
d2, d3 = f"{Device.DEFAULT}:3", f"{Device.DEFAULT}:4"
devices_2 = (d0, d1)
devices_3 = (d0, d1, d2)
N = 128
# shard_x is "data parallel"
# shard_w is "model parallel"
@unittest.skipIf(CI and Device.DEFAULT in {"GPU", "CUDA", "METAL"}, "no GPU CI")
class TestMultiTensor(unittest.TestCase):
def test_to(self):
X = Tensor.ones(256).contiguous().realize()
X.to_((d0, d1))
for lb in X.lazydata.lbs:
assert lb.shape == (256,)
(X + X).realize()
def test_shard(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_((d0, d1), 0)
for lb in X.lazydata.lbs:
assert lb.shape == (128,)
(X + X).realize()
def test_shard_same_device(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_((d0, X.device), 0)
(X + X).realize()
def test_shard_plus_one_sum(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_([d0, d1], 0)
(X + 1).sum().realize()
def test_shard_plus_one_sum_d_zero(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_([d_zero, d1], 0)
(X + 1).sum().realize()
def test_numpy(self):
X = Tensor.ones(256)
X.shard_((d0, d1), 0)
np.testing.assert_allclose(X.numpy(), 1)
def _test_simple_add_axis(self, shard_x, shard_w):
X = Tensor.ones(256).contiguous().realize()
W = Tensor.ones(256).contiguous().realize()
X.shard_((d0, d1), shard_x)
W.shard_((d0, d1), shard_w)
O = X + W
np.testing.assert_allclose(O.numpy(), 2)
def test_simple_add(self): return self._test_simple_add_axis(None, None)
def test_simple_add_X(self): return self._test_simple_add_axis(0, None)
def test_simple_add_W(self): return self._test_simple_add_axis(None, 0)
def test_simple_add_XW(self): return self._test_simple_add_axis(0, 0)
def test_four_add(self):
X = Tensor.ones(256, 256).contiguous().realize()
W = Tensor.ones(256, 256).contiguous().realize()
X.shard_((d0, d1, d2, d3), 1)
W.shard_((d0, d1, d2, d3), None)
O = X + W
np.testing.assert_allclose(O.numpy(), 2)
@given(strat.sampled_from((4, 5)), strat.sampled_from((devices_2, devices_3)), strat.sampled_from((ReduceOps.SUM, ReduceOps.MAX)),
strat.sampled_from((None, 0, 1)), strat.sampled_from((None, 0, 1)), strat.sampled_from((1, 0, -1)))
def test_simple_reduce(self, N, devices, rop, shard_axis, reduce_axis, sign):
X = Tensor.rand(N*N).reshape(N, N).mul(sign)
n = X.numpy()
X.shard_(devices, shard_axis)
f = {ReduceOps.SUM: lambda x: x.sum(reduce_axis), ReduceOps.MAX: lambda x: x.max(reduce_axis)}[rop]
fX = f(X)
fn = f(n)
np.testing.assert_allclose(fX.numpy(), fn, rtol=1e-6, atol=1e-6)
@unittest.skipIf(CI and Device.DEFAULT == "CLANG", "clang is slow")
def test_fuzz_allreduce(self):
random.seed(41)
for it in range(100):
for n in range(2, 4+1):
t = Tensor.rand(tuple([(n if i == 0 else 1) * randint(1, 10) for i in range(randint(1, 4))])).shard_(tuple([d0, d1, d2, d3][:n]), 0)
with Context(RING=0):
a = Tensor(MultiLazyBuffer(all_reduce(ReduceOps.SUM, t.lazydata.lbs), 0))
with Context(RING=2):
b = Tensor(MultiLazyBuffer(all_reduce(ReduceOps.SUM, t.lazydata.lbs), 0))
diff = a - b
mean_err = diff.reshape((prod(diff.shape),)).abs().mean().numpy()
max_err = diff.reshape((prod(diff.shape),)).abs().max().numpy()
assert mean_err < 1e-6, f"big mean error, iteration {it}_{n}"
assert max_err < 1e-6, f"big max error, iteration {it}_{n}"
def _test_matmul_shard_axis(self, shard_x, shard_w, device):
X = Tensor.kaiming_uniform(N, N).realize()
W = Tensor.kaiming_uniform(N, N).realize()
Xs = X.shard(device, shard_x)
Ws = W.shard(device, shard_w)
O = (Xs@Ws)
np.testing.assert_allclose(X.numpy() @ W.numpy(), O.to(Device.DEFAULT).numpy(), atol=1e-5)
def _test_double_matmul_shard_axis(self, shard_x, shard_w, device):
X = Tensor.kaiming_uniform(N, N).realize()
W1 = Tensor.kaiming_uniform(N, N).realize()
W2 = Tensor.kaiming_uniform(N, N).realize()
Xs = X.shard(device, shard_x)
W1s = W1.shard(device, shard_w)
W2s = W2.shard(device, shard_w)
O = (Xs@W1s)@W2s
np.testing.assert_allclose((X.numpy() @ W1.numpy()) @ W2.numpy(), O.to(Device.DEFAULT).numpy(), atol=1e-5)
def test_matmul_shard_none(self): return self._test_matmul_shard_axis(None, None, devices_2)
def test_matmul_shard_X_0(self): return self._test_matmul_shard_axis(0, None, devices_2)
def test_matmul_shard_X_1(self): return self._test_matmul_shard_axis(1, None, devices_2)
def test_matmul_shard_W_0(self): return self._test_matmul_shard_axis(None, 0, devices_2)
def test_matmul_shard_W_1(self): return self._test_matmul_shard_axis(None, 1, devices_2)
def test_matmul_shard_0_0(self): return self._test_matmul_shard_axis(0, 0, devices_2)
def test_matmul_shard_0_1(self): return self._test_matmul_shard_axis(0, 1, devices_2)
def test_matmul_shard_1_0(self): return self._test_matmul_shard_axis(1, 0, devices_2)
def test_matmul_shard_1_1(self): return self._test_matmul_shard_axis(1, 1, devices_2)
def test_double_matmul_shard_X_0(self): return self._test_double_matmul_shard_axis(0, None, devices_2)
def test_double_matmul_shard_X_1(self): return self._test_double_matmul_shard_axis(1, None, devices_2)
def test_double_matmul_shard_W_0(self): return self._test_double_matmul_shard_axis(None, 0, devices_2)
def test_double_matmul_shard_W_1(self): return self._test_double_matmul_shard_axis(None, 1, devices_2)
def test_conv_data_shard(self):
conv = nn.Conv2d(3, 16, 3, bias=False)
for p in get_parameters(conv): p.shard_((d0, d1))
fake_image = Tensor.rand((2, 3, 32, 32)).shard((d0, d1), axis=0)
out = conv(fake_image)
out.numpy()
def test_conv_bias_data_shard(self):
conv = nn.Conv2d(3, 16, 3)
for p in get_parameters(conv): p.shard_((d0, d1))
fake_image = Tensor.rand((2, 3, 32, 32)).shard((d0, d1), axis=0)
out = conv(fake_image)
out.numpy()
def test_backprop_conv(self):
conv = nn.Conv2d(3, 16, 3)
for p in get_parameters(conv): p.shard_((d0, d1))
optim = nn.optim.Adam(get_parameters(conv))
fake_image = Tensor.rand((2, 3, 32, 32)).shard((d0, d1), axis=0)
out = conv(fake_image)
optim.zero_grad()
out.mean().backward()
#for p in get_parameters(conv): p.grad.realize()
optim.step()
out.numpy()
def test_lr_scheduler_OneCycleLR(self):
from extra.lr_scheduler import OneCycleLR
conv = nn.Conv2d(3, 16, 3)
for p in get_parameters(conv): p.shard_((d0, d1))
optim = nn.optim.SGD(get_parameters(conv))
lr_sched = OneCycleLR(optim, max_lr=0.1, pct_start=0.1, div_factor=100, final_div_factor=0.1, total_steps=10)
lr_sched.step()
def test_embedding(self):
B, T, embed_size, vocab_size = 4, 10, 20, 28
layer = nn.Embedding(vocab_size, embed_size)
x = Tensor(np.random.randint(0, vocab_size, (B, T)))
z = layer(x)
layer_sharded = nn.Embedding(vocab_size, embed_size)
layer_sharded.weight.replace(layer.weight.shard((d0, d1), axis=1)).realize()
x_sharded = x.shard((d0, d1), axis=None)
z_shard = layer_sharded(x_sharded)
np.testing.assert_allclose(z.numpy(), z_shard.numpy(), atol=1e-6, rtol=1e-6)
def test_rmsnorm(self):
from extra.models.llama import RMSNorm
B, T, embed_size = 4, 10, 20
layer_norm = RMSNorm(embed_size)
x = Tensor.rand((B, T, embed_size)).contiguous().realize()
y = layer_norm(x)
# for norm layers, the correct way to shard weights is duplication
layer_norm_sharded = RMSNorm(embed_size)
layer_norm_sharded.weight.shard_((d0, d1), axis=None).realize()
# if x is being sharded, then all-reduce is involved
x_sharded = x.shard((d0, d1), axis=2).realize()
y_shard = layer_norm_sharded(x_sharded).realize()
np.testing.assert_allclose(y.numpy(), y_shard.numpy(), atol=1e-6, rtol=1e-6)
# if x is being duplicated, then the operations remain inside each GPU
# which is the common case
x_sharded = x.shard((d0, d1), axis=None).realize()
y_shard = layer_norm_sharded(x_sharded).realize()
np.testing.assert_allclose(y.numpy(), y_shard.numpy(), atol=1e-6, rtol=1e-6)
def test_data_parallel_resnet(self):
import sys, pathlib
sys.path.append((pathlib.Path(__file__).parent.parent / "extra" / "models").as_posix())
from resnet import ResNet18
fake_image = Tensor.rand((2, 3, 224, 224))
fake_image_sharded = fake_image.shard((d0, d1), axis=0)
m = ResNet18()
m.load_from_pretrained()
real_output = m(fake_image).log_softmax().numpy()
for p in get_parameters(m): p.shard_((d0, d1)).realize()
GlobalCounters.reset()
shard_output = m(fake_image_sharded).log_softmax().realize()
assert shard_output.lazydata.lbs[0].shape == (1, 1000)
assert shard_output.lazydata.lbs[1].shape == (1, 1000)
shard_output_np = shard_output.numpy()
np.testing.assert_allclose(real_output, shard_output_np, atol=1e-6, rtol=1e-6)
def test_data_parallel_resnet_train_step(self):
import sys, pathlib
sys.path.append((pathlib.Path(__file__).parent.parent / "extra" / "models").as_posix())
from resnet import ResNet18
from tinygrad.nn.optim import LARS
fake_image = Tensor.rand((2, 3, 224, 224))
fake_image_sharded = fake_image.shard((d0, d1), axis=0)
labels = Tensor.randint(2, low=0, high=1000)
labels_sharded = labels.shard((d0, d1), axis=0)
m = ResNet18()
optimizer = LARS(get_parameters(m), 0.1) # set requires_grad for all params
optimizer.zero_grad()
m.load_from_pretrained()
output = m(fake_image).sparse_categorical_crossentropy(labels, label_smoothing=0.1)
output.backward()
grad = m.conv1.weight.grad.numpy()
for p in get_parameters(m): p.shard_((d0, d1)).realize()
GlobalCounters.reset()
optimizer.zero_grad()
shard_output = m(fake_image_sharded).sparse_categorical_crossentropy(labels_sharded, label_smoothing=0.1)
assert shard_output.lazydata.axis is None
shard_output.backward()
shard_grad = m.conv1.weight.grad.numpy()
# sometimes there is zeros in these grads... why?
np.testing.assert_allclose(grad, shard_grad, atol=3e-6, rtol=3e-6)
def test_multi_tensor_jit_param(self):
@TinyJit
def jf(a, b) -> Tensor:
return (a + b).realize()
for _ in range(5):
a = Tensor.ones(256).contiguous().realize()
b = Tensor.ones(256).contiguous().realize()
a.shard_((d0, d1))
b.shard_((d0, d1))
c = jf(a, b)
np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert len(jf.jit_cache) > 0
def test_multi_tensor_jit_body(self):
@TinyJit
def jf() -> Tensor:
a = Tensor.ones(256).contiguous().realize()
b = Tensor.ones(256).contiguous().realize()
a.shard_((d0, d1))
b.shard_((d0, d1))
return (a + b).realize()
for _ in range(5):
r = jf()
np.testing.assert_allclose(r.numpy(), np.ones(256)+np.ones(256), atol=1e-4, rtol=1e-5)
assert len(jf.jit_cache) > 0
#@unittest.skipIf(CI and Device.DEFAULT=="METAL", "no ICB in CI, creation of graph fails")
@unittest.skip("test broken")
def test_multi_device_jit_graph(self):
if Device[d0].graph is None or Device[d1].graph is None: raise unittest.SkipTest("only test graphs")
@TinyJit
def jf(a: Tensor, b: Tensor, c: Tensor, d:Tensor):
# Create 80 entries on device 0: 2 batches.
for _ in range(40):
a = ((a + b).realize() + (a * b).realize()).realize()
# Create 80 entries on device 1: 2 batches.
for _ in range(40):
c = ((c + d).realize() + (c * d).realize()).realize()
# Create a copy from device 0 to 1: 1 entry.
a = a.to(d1).realize()
# Creates one last entry on device 1: 1 batch.
return (a + c).realize()
a = Tensor.randn(10, 10, device=d0).realize()
b = Tensor.randn(10, 10, device=d0).realize()
c = Tensor.randn(10, 10, device=d1).realize()
d = Tensor.randn(10, 10, device=d1).realize()
ref = jf(a, b, c, d).numpy()
for _ in range(5):
o = jf(a, b, c, d).numpy()
np.testing.assert_allclose(ref, o, atol=1e-4, rtol=1e-5)
graph_d0 = Device[d0].graph.func if isinstance(Device[d0].graph, functools.partial) else Device[d0].graph
graph_d1 = Device[d1].graph.func if isinstance(Device[d1].graph, functools.partial) else Device[d1].graph
# Checking that 2 graphs per device, 1 copy and 1 last graph on device 1 are created.
assert isinstance(jf.jit_cache[0].prg, graph_d0)
assert isinstance(jf.jit_cache[1].prg, graph_d0)
assert isinstance(jf.jit_cache[2].prg, graph_d1)
assert isinstance(jf.jit_cache[3].prg, graph_d1)
assert isinstance(jf.jit_cache[4].prg, BufferCopy)
assert isinstance(jf.jit_cache[5].prg, graph_d1)
def test_uneven_shard(self):
for N in range(1, 6):
X = Tensor.rand(4, 1, 257).contiguous().realize()
n = X.numpy()
devices = tuple(f"{Device.DEFAULT}:{i}" for i in range(N))
X.shard_(devices, 2)
np.testing.assert_equal(X.numpy(), n)
np.testing.assert_equal(X.reshape(2, 2, 257).numpy(), n.reshape((2, 2, 257)))
np.testing.assert_equal(X.shrink(((0,2), (0, 1), (0,257))).numpy(), n[0:2, 0:1, 0:257])
np.testing.assert_equal(X.expand((4, 4, 257)).numpy(), np.tile(n, (1, 4, 1)))
np.testing.assert_equal(X.permute((0, 2, 1)).numpy(), np.transpose(n, (0, 2, 1)))
def test_bn_ast_on_devices(self):
devices = (d0, d1, d2, d3)
t = Tensor.empty((16, 64, 112, 112)).shard(devices, axis=0)
bn = nn.BatchNorm2d(64)
for p in get_parameters(bn): p.shard_(devices).realize()
out = bn(t)
scheds = [sched for sched in create_schedule(out.lazydata.lbs) if sched.outputs[0].device in devices and sched.ast[0].op is not LoadOps.COPY]
assert set(out.device for sched in scheds for out in sched.outputs) == set(devices), "should have ast on each shard device"
asts = [sched.ast for sched in scheds]
assert len(asts) == 8, len(asts)
# test case to show that ast can be different on devices
# TODO: make ast identical on devices
#assert len(set(asts)) == 4, len(asts)
# for i, ast in enumerate(asts):
# print(f"{i} {ast}")
def test_reshape_on_axis(self):
devices = (d0, d1, d2)
t0 = Tensor.rand((26, 15, 7)).shard(devices, axis=1)
# test split and rejoin to the right
t1 = t0.reshape((26, 3, 5, 7))
t2 = t0.reshape((26, 3, 35))
t3 = t1.reshape((26, 15, 7))
t4 = t2.reshape((26, 105,))
for t in [t0, t1, t2, t3, t4]:
assert t.lazydata.axis == 1
np.testing.assert_allclose(t.numpy().flatten(), t0.numpy().flatten())
# test shape-one axis
t5 = t4.reshape((26, 1, 105))
assert t5.lazydata.axis == 2
np.testing.assert_allclose(t.numpy().flatten(), t5.numpy().flatten())
# test split and rejoin to the right and reshape to the left
t5 = t0.reshape((2, 13, 3, 5, 7))
t6 = t0.reshape((13, 2, 3, 7, 5))
t7 = t0.reshape((1, 13, 2, 3, 1, 7, 5))
np.testing.assert_allclose(t5.numpy().flatten(), t0.numpy().flatten())
assert t5.lazydata.axis == 2
np.testing.assert_allclose(t6.numpy().flatten(), t0.numpy().flatten())
assert t6.lazydata.axis == 2
np.testing.assert_allclose(t7.numpy().flatten(), t0.numpy().flatten())
assert t7.lazydata.axis == 3
# test no left join
with self.assertRaises((AssertionError, ValueError)):
t0.reshape((26*15,7))
def test_reshape_on_axis_uneven(self):
devices = (d0, d1, d2)
t0 = Tensor.rand((4, 8, 15)).shard(devices, axis=1)
# no split axis if uneven
with self.assertRaises((AssertionError, ValueError)):
t0.reshape((4,4,2,15))
# ok to split reshape left and right though
t1 = t0.reshape(2, 2, 8, 3, 5)
np.testing.assert_allclose(t0.numpy().flatten(), t1.numpy().flatten())
assert t1.lazydata.axis == 2
def test_mlb_assign_change_axis(self):
devices = (d0, d1)
t_none = Tensor.zeros((16, 16)).shard(devices).contiguous().realize()
t_zero = Tensor.ones((16, 16)).shard(devices, axis=0)
with self.assertRaises(AssertionError):
# don't allow assigns that change axes
t_none.assign(t_zero)
def test_dropout_on_shard(self):
Tensor.training = True
X = Tensor.ones(256).to(devices_2)
output = X.dropout(0.5)
output.numpy()
Tensor.training = False
@unittest.skipIf(CI and Device.DEFAULT in {"GPU", "CUDA", "METAL"}, "no GPU CI")
class TestShrinkMultiTensorShardedAxis(unittest.TestCase):
# shrink a multitensor on sharded axis
def test_shrink_bad_args(self):
t = Tensor.arange(64).reshape(8, 8).contiguous().realize()
t.shard_([f"{Device.DEFAULT}:{i}" for i in range(4)], axis=0)
with self.assertRaises(AssertionError):
# sharded axis shrink on non-device boundry is not allowed
a = t.shrink(((0, 3), (0, 8)))
with self.assertRaises(AssertionError):
# cannot shrink sharded and non-sharded axis at the same time
a = t.shrink(((0, 2), (2, 4)))
a = t.shrink(((0, 2), (0, 8)))
assert a.shape == (2, 8)
assert a.lazydata.real == [True, False, False, False]
with self.assertRaises(AssertionError):
# cannot pad sharded and non-sharded axis at the same time
p = a.pad(((0, 6), (0, 1)))
with self.assertRaises(AssertionError):
# can only pad to whole axis
p = a.pad(((1, 5), (0, 0)))
p = a.pad(((0, 6), (0, 0)))
assert p.shape == (8, 8)
assert p.lazydata.real == [True, True, True, True]
def test_ops(self):
t = Tensor.arange(64).reshape(8, 8).contiguous().realize()
t.shard_([f"{Device.DEFAULT}:{i}" for i in range(4)], axis=0)
for i in range(4):
print(f"{i=}")
a = t.shrink(((0+2*i,2+2*i),None))
b = Tensor(t.numpy()[0+2*i:2+2*i])
assert a.shape == b.shape == (2, 8)
assert a.lazydata.real == [i==j for j in range(4)]
np.testing.assert_allclose(a.numpy(), b.numpy())
# cast
np.testing.assert_allclose(a.float().numpy(), b.float().numpy())
# elementwise
np.testing.assert_allclose(a.exp().numpy(), b.exp().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.reciprocal().numpy(), b.reciprocal().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.pow(-0.5).numpy(), b.pow(-0.5).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose((a+a).numpy(), (b+b).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_equal((a+1).numpy(), (b+1).numpy())
np.testing.assert_equal((1+a).numpy(), (1+b).numpy())
np.testing.assert_allclose((a.where(a+a, a)).numpy(), (b.where(b+b, b)).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose((a.where(1, 0)).numpy(), (b.where(1, 0)).numpy(), rtol=1e-7, atol=1e-3)
# reduce
np.testing.assert_allclose(a.max().numpy(), b.max().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.sum().numpy(), b.sum().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.mean().numpy(), b.mean().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.max(0).numpy(), b.max(0).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.sum(0).numpy(), b.sum(0).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.mean(0).numpy(), b.mean(0).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.max(1).numpy(), b.max(1).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.sum(1).numpy(), b.sum(1).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.mean(1).numpy(), b.mean(1).numpy(), rtol=1e-7, atol=1e-3)
# pad it back
np.testing.assert_allclose(a.pad(((2*i, 2*(4-i-1)), None)).numpy(), b.pad(((2*i, 2*(4-i-1)), None)).numpy(), rtol=1e-7, atol=1e-3)
# other movement
np.testing.assert_allclose(a.pad((None, (1, 1))).numpy(), b.pad((None, (1, 1))).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.shrink((None, (1, 3))).numpy(), b.shrink((None, (1, 3))).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.permute((1, 0)).numpy(), b.permute((1, 0)).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.reshape((2, 2, 4)).numpy(), b.reshape((2, 2, 4)).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.reshape((2, 1, 8)).expand((2, 5, 8)).numpy(), b.reshape((2, 1, 8)).expand((2, 5, 8)).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.flip(-1).numpy(), b.flip(-1).numpy(), rtol=1e-7, atol=1e-3)
def test_uneven(self):
t = Tensor.arange(24).reshape(3, 8).contiguous().realize()
t.shard_([f"{Device.DEFAULT}:{i}" for i in range(2)], axis=0)
a = t.shrink(((0, 2), None))
b = t.shrink(((2, 3), None))
na = t.numpy()[0:2]
nb = t.numpy()[2:3]
np.testing.assert_equal(a.numpy(), na)
np.testing.assert_equal(b.numpy(), nb)
np.testing.assert_equal((a+1).numpy(), na+1)
np.testing.assert_equal((b+1).numpy(), nb+1)
np.testing.assert_equal((1+a).numpy(), 1+na)
np.testing.assert_equal((1+b).numpy(), 1+nb)
np.testing.assert_equal((a+a).numpy(), na+na)
np.testing.assert_equal((b+b).numpy(), nb+nb)
def test_add_two_partitions(self):
t = Tensor.arange(64).reshape(8, 8).contiguous().realize()
t.shard_([f"{Device.DEFAULT}:{i}" for i in range(4)], axis=0)
a = t.shrink(((2, 4), None))
b = t.shrink(((6, 8), None))
na = t.numpy()[2:4]
nb = t.numpy()[6:8]
np.testing.assert_equal(a.numpy(), na)
np.testing.assert_equal(b.numpy(), nb)
with self.assertRaises(AssertionError):
# cannot add directly
c = a + b
c = a.pad(((2, 4), None)) + b.pad(((6, 0), None))
expected = np.concatenate([np.zeros_like(t.numpy()[0:2]), na, np.zeros_like(t.numpy()[4:6]), nb])
np.testing.assert_equal(c.numpy(), expected)
def test_add_different_tensors(self):
devices = [f"{Device.DEFAULT}:{i}" for i in range(4)]
x = Tensor.arange(64).reshape(8, 8).contiguous().realize().shard(devices, axis=0)
to_add = []
for i in range(len(devices)):
to_add.append((Tensor.ones(2, 8) * i).shard(devices))
added:List[Tensor] = []
for bound, a in zip(x.lazydata.bounds, to_add):
added.append(x[bound[0]:bound[1]] + a)
output = added[0].cat(*added[1:])
expected = np.arange(64).reshape((8,8)) + np.array([[0,0,1,1,2,2,3,3] for _ in range(8)]).T
np.testing.assert_allclose(output.numpy(), expected)
def test_unsynced_backprop_conv_bn(self):
from extra.lr_scheduler import OneCycleLR
convs = [nn.Conv2d(3, 16, 3), nn.Conv2d(3, 16, 3)]
bns = [nn.BatchNorm2d(16), nn.BatchNorm2d(16)]
for p in get_parameters(convs + bns):
p.shard_((d1, d2))
optim = nn.optim.Adam(get_parameters(convs + bns))
lr_sched = OneCycleLR(optim, max_lr=0.1, pct_start=0.1, div_factor=100, final_div_factor=0.1, total_steps=10)
lr_sched.step()
fake_image = Tensor.rand((8, 3, 32, 32)).shard((d1, d2), axis=0)
f1 = fake_image.shrink(((0, 4), None, None, None))
f2 = fake_image.shrink(((4, 8), None, None, None))
out1 = bns[0](convs[0](f1))
out2 = bns[1](convs[1](f2))
out = out1.cat(out2)
optim.zero_grad()
out.mean().backward()
optim.step()
out.numpy()
def test_unsynced_backprop_standalone_bn(self):
from extra.lr_scheduler import OneCycleLR
GPUS = (d1, d2)
class BatchNorm:
def __init__(self, num_features):
self.bns:List[nn.BatchNorm2d] = []
for _ in GPUS:
bn = nn.BatchNorm2d(num_features, track_running_stats=False, eps=1e-12, momentum=0.85, affine=True)
self.bns.append(bn)
def __call__(self, x:Tensor):
bn_ts = []
for bound, bn in zip(x.lazydata.bounds, self.bns):
xi = x.shrink((bound, None, None, None))
bni = bn(xi)
bn_ts.append(bni)
return bn_ts[0].cat(*bn_ts[1:])
with Tensor.train():
conv = nn.Conv2d(3, 16, 3)
bn = BatchNorm(16)
for p in get_parameters([conv, bn]):
p.shard_(GPUS)
optim = nn.optim.Adam(get_parameters([conv, bn]))
lr_sched = OneCycleLR(optim, max_lr=0.1, pct_start=0.1, div_factor=100, final_div_factor=0.1, total_steps=10)
lr_sched.step()
fake_image = Tensor.rand((8, 3, 32, 32)).shard(GPUS, axis=0)
out = bn(conv(fake_image))
optim.zero_grad()
out.mean().backward()
optim.step()
def test_unsynced_backprop_sync_weights(self):
from extra.lr_scheduler import OneCycleLR
from examples.hlb_cifar10 import UnsyncedBatchNorm
GPUS = (d1, d2)
with Tensor.train():
conv = nn.Conv2d(3, 16, 3)
bn = UnsyncedBatchNorm(16, num_devices=len(GPUS))
for k, p in get_state_dict([conv, bn]).items():
if 'running_mean' in k or 'running_var' in k:
p.shard_(GPUS, axis=0)
else:
p.to_(GPUS)
optim = nn.optim.Adam(get_parameters([conv, bn]))
lr_sched = OneCycleLR(optim, max_lr=0.1, pct_start=0.1, div_factor=100, final_div_factor=0.1, total_steps=10)
lr_sched.step()
fake_image = Tensor.rand((8, 3, 32, 32)).shard(GPUS, axis=0)
out = bn(conv(fake_image))
optim.zero_grad()
out.mean().backward()
optim.step()
@given(strat.sampled_from((False, True)))
def test_batchnorm(self, is_training):
devices = [f"{Device.DEFAULT}:{i}" for i in range(4)]
x = Tensor.arange(4096).reshape(8, 8, 8, 8).contiguous().realize().shard(devices, axis=0)
with Tensor.train(is_training):
bns = []
for _ in range(len(devices)):
bn = nn.BatchNorm2d(8)
for p in get_parameters(bn):
p.shard_(devices)
bn.weight.requires_grad = True
bn.bias.requires_grad = True
bns.append(bn)
bn_ts = []
for bound, bn in zip(x.lazydata.bounds, bns):
bni = bn(x[bound[0]:bound[1]])
bn_ts.append(bni)
bn_ts[0].cat(*bn_ts[1:]).numpy()
def test_synced_vs_unsynced_bn(self):
from examples.hlb_cifar10 import UnsyncedBatchNorm
from tinygrad.nn import BatchNorm2d
devices = [f"{Device.DEFAULT}:{i}" for i in range(4)]
x = Tensor.ones(8, 8, 8, 8).contiguous().realize().shard(devices, axis=0)
with Tensor.train():
synced_bn = BatchNorm2d(8)
unsynced_bn = UnsyncedBatchNorm(8, num_devices=len(devices))
for p in get_parameters(synced_bn):
p.shard_(devices)
for k, p in get_state_dict(unsynced_bn).items():
if 'running_mean' in k or 'running_var' in k:
p.shard_(devices, axis=0)
else:
p.to_(devices)
synced_out = synced_bn(x)
synced_si = [si for si in create_schedule(synced_out.lazydata.lbs)]
unsynced_out = unsynced_bn(x)
unsynced_si = [si for si in create_schedule(unsynced_out.lazydata.lbs)]
# TODO: test synced / unsynced batchnorm cross device kernel and copies
assert synced_si
assert unsynced_si
if __name__ == '__main__':
unittest.main()